Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Water  /  Vol: 9 Núm: 8 Par: 0 (2017)  /  Artículo
ARTÍCULO
TITULO

Watershed Variability in Streambank Erodibility and Implications for Erosion Prediction

Holly K. Enlow    
Garey A. Fox    
Lucie Guertault    

Resumen

Two fluvial erosion models are commonly used to simulate the erosion rate of cohesive soils: the empirical excess shear stress model and the mechanistic Wilson model. Both models include two soil parameters, the critical shear stress (tc) and the erodibility coefficient (kd) for the excess shear stress model and b0 and b1 for the Wilson model. Jet erosion tests (JETs) allow for in-situ determination of these parameters. JETs were completed at numerous sites along two streams in each the Illinois River and Fort Cobb Reservoir watersheds. The objectives were to use JET results from these streambank tests to investigate variability of erodibility parameters on the watershed scale and investigate longitudinal trends in streambank erodibility. The research also determined the impact of this variability on lateral retreat predicted by a process-based model using both the excess shear stress model and the Wilson model. Parameters derived from JETs were incorporated into a one-dimensional process-based model to simulate bank retreat for one stream in each watershed. Erodibility parameters varied by two to five and one to two orders of magnitude in the Illinois River watershed and Fort Cobb Reservoir watershed, respectively. Less variation was observed in predicted retreat by a process-based model compared to the input erodibility parameters. Uncalibrated erodibility parameters and simplified applied shear stress estimates failed to match observed lateral retreats suggesting the need for model calibration and/or advanced flow modeling.