Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Buildings  /  Vol: 7 Núm: 4 Par: Decembe (2017)  /  Artículo
ARTÍCULO
TITULO

An Introduction to a Novel and Rapid nZEB Skill-Mapping and Qualification Framework Methodology

Jan Cromwijk    
Carolina Mateo-Cecilia    
Cristina Jareño-Escudero    
Veronika Schröpfer and Peter Op?t Veld    

Resumen

No disponible

 Artículos similares

       
 
Tan Nghia Duong, Nguyen Nam Doan, Truong Giang Do, Manh Hoang Tran, Duc Minh Nguyen and Quang Hieu Dang    
Recommendation systems based on convolutional neural network (CNN) have attracted great attention due to their effectiveness in processing unstructured data such as images or audio. However, a huge amount of raw data produced by data crawling and digital... ver más
Revista: Future Internet

 
Dennis Przytarski, Christoph Stach, Clémentine Gritti and Bernhard Mitschang    
When, in 2008, Satoshi Nakamoto envisioned the first distributed database management system that relied on cryptographically secured chain of blocks to store data in an immutable and tamper-resistant manner, his primary use case was the introduction of a... ver más
Revista: Future Internet

 
Liangkun Liu, Yuze Zheng, Zhaodong Pan and Qing Lyu    
Due to aesthetic demands and the necessity for multi-functionality, a unique structure with one or multiple links connecting adjacent buildings has attracted the attention of researchers. In order to improve vibration control, this study investigates the... ver más
Revista: Buildings

 
Chen Wang and Chang-bin Yu    
Structurally describing the portrayal-related information by using a standalone Digital Cartographic Model on top of a Digital Landscape Model has been proved applicable and beneficial for 2D mapping but has not yet been applied to 3D cadastre. This stud... ver más

 
Wouter B. Verschoof-van der Vaart, Karsten Lambers, Wojtek Kowalczyk and Quentin P.J. Bourgeois    
This paper presents WODAN2.0, a workflow using Deep Learning for the automated detection of multiple archaeological object classes in LiDAR data from the Netherlands. WODAN2.0 is developed to rapidly and systematically map archaeology in large and comple... ver más