Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Water  /  Vol: 9 Núm: 10 Par: 0 (2017)  /  Artículo
ARTÍCULO
TITULO

Comparative Analysis of ANN and SVM Models Combined with Wavelet Preprocess for Groundwater Depth Prediction

Ting Zhou    
Faxin Wang    
Zhi Yang    

Resumen

Reliable prediction of groundwater depth fluctuations has been an important component in sustainable water resources management. In this study, a data-driven prediction model combining discrete wavelet transform (DWT) preprocess and support vector machine (SVM) was proposed for groundwater depth forecasting. Regular artificial neural networks (ANN), regular SVM, and wavelet preprocessed artificial neural networks (WANN) models were also developed for comparison. These methods were applied to the monthly groundwater depth records over a period of 37 years from ten wells in the Mengcheng County, China. Relative absolute error (RAE), Pearson correlation coefficient (r), root mean square error (RMSE), and Nash-Sutcliffe efficiency (NSE) were adopted for model evaluation. The results indicate that wavelet preprocess extremely improved the training and test performance of ANN and SVM models. The WSVM model provided the most precise and reliable groundwater depth prediction compared with ANN, SVM, and WSVM models. The criterion of RAE, r, RMSE, and NSE values for proposed WSVM model are 0.20, 0.97, 0.18 and 0.94, respectively. Comprehensive comparisons and discussion revealed that wavelet preprocess extremely improves the prediction precision and reliability for both SVM and ANN models. The prediction result of SVM model is superior to ANN model in generalization ability and precision. Nevertheless, the performance of WANN is superior to SVM model, which further validates the power of data preprocess in data-driven prediction models. Finally, the optimal model, WSVM, is discussed by comparing its subseries performances as well as model performance stability, revealing the efficiency and universality of WSVM model in data driven prediction field.

 Artículos similares

       
 
Siarhei Autsou, Karolina Kudelina, Toomas Vaimann, Anton Rassõlkin and Ants Kallaste    
Servomotors have found widespread application in many areas, such as manufacturing, robotics, automation, and others. Thus, the control of servomotors is divided into various principles and methods, leading to a high diversity of control systems. This ar... ver más
Revista: Applied Sciences

 
Kristina Mazur, Mischa Saleh and Mirko Hornung    
Early and rapid environmental assessment of newly developed aircraft concepts is eminent in today?s climate debate. This can shorten the decision-making process and thus accelerate the entry into service of climate-friendly technologies. A holistic appro... ver más
Revista: Aerospace

 
Maryan Rizinski, Andrej Jankov, Vignesh Sankaradas, Eugene Pinsky, Igor Mishkovski and Dimitar Trajanov    
The task of company classification is traditionally performed using established standards, such as the Global Industry Classification Standard (GICS). However, these approaches heavily rely on laborious manual efforts by domain experts, resulting in slow... ver más
Revista: Information

 
George Westergaard, Utku Erden, Omar Abdallah Mateo, Sullaiman Musah Lampo, Tahir Cetin Akinci and Oguzhan Topsakal    
Automated Machine Learning (AutoML) tools are revolutionizing the field of machine learning by significantly reducing the need for deep computer science expertise. Designed to make ML more accessible, they enable users to build high-performing models wit... ver más
Revista: Information

 
Hamed Taherdoost and Mitra Madanchian    
Blockchain technology has become a powerful disruptive force that upends established ideas in several industries. A fascinating point of convergence is that of blockchain technology and Business Process Management (BPM), where the distributed and immutab... ver más
Revista: Information