Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Sustainability  /  Vol: 3 Núm: 9 Par: Septemb (2011)  /  Artículo
ARTÍCULO
TITULO

Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture

Bertrand Hirel    
Thierry Tétu    
Peter J. Lea and Frédéric Dubois    

Resumen

In this review, we present the recent developments and future prospects of improving nitrogen use efficiency (NUE) in crops using various complementary approaches. These include conventional breeding and molecular genetics, in addition to alternative farming techniques based on no-till continuous cover cropping cultures and/or organic nitrogen (N) nutrition. Whatever the mode of N fertilization, an increased knowledge of the mechanisms controlling plant N economy is essential for improving NUE and for reducing excessive input of fertilizers, while maintaining an acceptable yield and sufficient profit margin for the farmers. Using plants grown under agronomic conditions, with different tillage conditions, in pure or associated cultures, at low and high N mineral fertilizer input, or using organic fertilization, it is now possible to develop further whole plant agronomic and physiological studies. These can be combined with gene, protein and metabolite profiling to build up a comprehensive picture depicting the different steps of N uptake, assimilation and recycling to produce either biomass in vegetative organs or proteins in storage organs. We provide a critical overview as to how our understanding of the agro-ecophysiological, physiological and molecular controls of N assimilation in crops, under varying environmental conditions, has been improved. We have used combined approaches, based on agronomic studies, whole plant physiology, quantitative genetics, forward and reverse genetics and the emerging systems biology. Long-term sustainability may require a gradual transition from synthetic N inputs to legume-based crop rotation, including continuous cover cropping systems, where these may be possible in certain areas of the world, depending on climatic conditions. Current knowledge and prospects for future agronomic development and application for breeding crops adapted to lower mineral fertilizer input and to alternative farming techniques are explored, whilst taking into account the constraints of both the current world economic situation and the environment.

 Artículos similares

       
 
Guoyuan Yang, Zhi Li and Xu Xiao    
To clarify the soil nutrient status and identify the safety risks of heavy metals in Camellia oleifera planting regions, the integrated soil fertility status was assessed using the improved Nemero composite index method, weighted average method, and coef... ver más
Revista: Water

 
Yaming Zhai, Qinyuan Zhu, Ying Xiao, Jingnan Chen, Maomao Hou and Lin Zhu    
Organic fertilizer applications and subsurface drainage are two important measures for improving coastal saline soil; however, nitrous oxide (N2O) emissions from saline soil under a combination of these two measures are seldom evaluated. In this study, s... ver más
Revista: Water

 
Teck Heng Neo, Dong Xu, Harsha Fowdar, David T. McCarthy, Enid Yingru Chen, Theresa Marie Lee, Geok Suat Ong, Fang Yee Lim, Say Leong Ong and Jiangyong Hu    
In Singapore, active, beautiful, clean waters design features (ABCWDFs), such as rain gardens and vegetated swales, are used as a sustainable approach for stormwater management. Field monitoring studies characterising the performance of these design feat... ver más
Revista: Water

 
Yun Zhang, Feng Liu, Yidong Lin, Lei Sun, Xinru Guo, Shuai Yang and Jinlong He    
This paper studies the effects of planting plants and coupled microbial fuel cells (MFCs) on the decontamination capacity and purification mechanism of constructed wetlands (CWs). Four systems were set, namely CW-without plants (A1), CW-with plants (A2),... ver más
Revista: Water

 
Nicholas Dercas, Nicolas R. Dalezios, Stamatis Stamatiadis, Eleftherios Evangelou, Antonios Glampedakis, Georgios Mantonanakis and Nicholaos Tserlikakis    
AquaCrop is a well-known water-oriented crop model. The model has been often used to simulate various crops and the water balance in the field under different irrigation treatments, but studies that relate AquaCrop to fertilization are rare. In this stud... ver más
Revista: Hydrology