Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

Experimental study of cavitation destruction of a protective composite polyurethane-based material

Anatoly Ischenko    
Dmitry Rassokhin    
Elena Nosovskaya    

Resumen

Studying the process of cavitation has remained relevant up to now. The reason for this is the multifactorial causes of cavitation and, as a result, the difficulty to prevent it. One effective way to fight cavitation destruction is to use specialized materials resistant to cavitation erosion in pumping equipment, in order to form a basis, for example, for manufacturing a new impeller.In order to protect surfaces from cavitation, a specialized material has been developed based on polyurethane (DC-2), which makes it possible to resist cavitation without destroying the protective layer itself. An impact method was chosen to determine the effectiveness of applying the developed material. Its essence implies exposing a prototype to cyclic impact loading. To estimate the capability of the examined material to resist impact loading, we have designed samples in the form of cylinders with the thickness of the examined samples chosen based on the practical conditions for restoring equipment, namely, based on the optimal thickness of the applied material at restoration. Values for the layer's thickness were experimentally set within 2?5 mm. Experimental loading of the examined samples has shown the high efficiency of using the developed material as protection during the cavitation destruction of a part for different loading modes. Given that the polymeric material DC-2 has a high level of liquid fluidity, it was proposed to add a thickener in the form of a glass-containing filler the type of "Orosil". In addition, considering the complex type of wear in pumping equipment, it was suggested to strengthen the polymeric material with finely dispersed abrasive particles. The current work involved an experimental testing of the effect of additional inclusions on the strength of the polymeric layer

 Artículos similares

       
 
Zhike Zou, Longcang Shu, Xing Min and Esther Chifuniro Mabedi    
The artificial recharge of stormwater is an effective approach for replenishing aquifer and reduce urban waterlogging, but prone to clogging by suspended particles (SP) that are highly heterogeneously sized. In this paper, the transport and deposition of... ver más
Revista: Water

 
Zuhier Alakayleh, Xing Fang and T. Prabhakar Clement    
This study aims at furthering our understanding of the Modified Philip?Dunne Infiltrometer (MPDI), which is used to determine the saturated hydraulic conductivity Ks and the Green?Ampt suction head ? at the wetting front. We have developed a forward-mode... ver más
Revista: Water

 
Ewa Stanczyk-Mazanek, Longina Stepniak and Urszula Kepa    
In this paper, we discuss the effect sewage sludge (SS) application has on the contamination of polycyclic aromatic hydrocarbons in fertilized soils and groundwater. Morver, the contents of these compounds in plant biomass was analyzed. For six months, c... ver más
Revista: Water

 
Xiaoni Yang, Juanjuan Ma, Yongye Li, Xihuan Sun, Xiaomeng Jia and Yonggang Li    
Hydraulic transportation of the piped carriage is a new energy-saving and environmentally-friendly transportation mode. There are two main states in the conveying process, stationary and moving. In the process of hydraulic transportation of the piped car... ver más
Revista: Water

 
Taufiq Saidi,Taufiq Saidi,Muttaqin Hasan,Muttaqin Hasan,Zahra Amalia,Muhammad Iqbal,Muhammad Iqbal     Pág. 155 - 164
The use of synthetic Fiber Reinforced Polymer (FRP) as a composite material is an alternative material that has been widely used for strengthening and repairing reinforced concrete structures. However, the high price is one of the obstacles in applying s... ver más