Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

A learning model for design-build project selection in the public sector

Alfonso Bastias    
Keith R. Molenaar    

Resumen

The primary method of public sector project delivery in the United States (U.S.) has traditionally been design-bid-build delivery. The public sector has historically separated design and construction contracts. In the 1990s, the U.S. public sector began to experiment with design-build project delivery, which combines design and construction in one contract. In 1997, a decision support system was developed to provide a formal selection model for public sector design-build projects. The model supports public owners in determining which projects are appropriate for design-build delivery. This initial model was static in nature and was based on a regression analysis of 104 projects. The analysis resulted in a predictive model with five performance criteria: overall satisfaction; administrative burden; conformance to expectations; schedule variance; and budget variance. Since 1997, the number of design-build projects has increased dramatically and public sector design-build methods have evolved. The original model can be improved with new data and a new framework to provide for an adaptive model as the industry continues to evolve. This paper presents a formalized application and use of learning capabilities to supplement the original static model. This model adjusts parameters and functions using artificial intelligence as the main knowledge engine. This approach can be adapted to many applications of decision support in the design and construction industry.Rev. ing. constr. [online]. 2010, vol.25, n.1, pp. 5-20. ISSN 0718-5073.  http://dx.doi.org/10.4067/S0718-50732010000100001

 Artículos similares

       
 
Jing Liu, Xuesong Hai and Keqin Li    
Massive amounts of data drive the performance of deep learning models, but in practice, data resources are often highly dispersed and bound by data privacy and security concerns, making it difficult for multiple data sources to share their local data dir... ver más
Revista: Future Internet

 
Subin Kim, Heejin Hwang, Keunyeong Oh and Jiuk Shin    
The seismically deficient column details in existing reinforced concrete buildings affect the overall behavior of the building depending on the failure type of the column. The purpose of this study is to develop and validate a machine-learning-based pred... ver más
Revista: Applied Sciences

 
Qishun Mei and Xuhui Li    
To address the limitations of existing methods of short-text entity disambiguation, specifically in terms of their insufficient feature extraction and reliance on massive training samples, we propose an entity disambiguation model called COLBERT, which f... ver más
Revista: Information

 
Fariha Imam, Petr Musilek and Marek Z. Reformat    
Due to aging infrastructure, technical issues, increased demand, and environmental developments, the reliability of power systems is of paramount importance. Utility companies aim to provide uninterrupted and efficient power supply to their customers. To... ver más
Revista: Information

 
Peranut Nimitsurachat and Peter Washington    
Emotion recognition models using audio input data can enable the development of interactive systems with applications in mental healthcare, marketing, gaming, and social media analysis. While the field of affective computing using audio data is rich, a m... ver más
Revista: AI