Redirigiendo al acceso original de articulo en 18 segundos...
ARTÍCULO
TITULO

DATA MINING CLUSTERING MENGGUNAKAN ALGORITMA K-MEANS UNTUK KLASTERISASI TINGKAT TRIDARMA PENGAJARAN DOSEN DOI : 10.24114/cess.v4i2.13620 | Abstract views : times

Rizki Muliono    
Zulfikar Sembiring    

Resumen

Universitas medan area memiliki dosen dengan jumlah yang banyak dimana setiap dosen mengampuh matakuliah sesuai bidang keahliannya masing-masing. Setiap semesternya dosen diwajibkan membuat dokumen pengajaran seperti Silabus, RPS, Kontrak Kuliah, RPP dan kemudian diupload ke aplikasi RPS milik Universitas Medan Area untuk dinilai oleh Unit LP2MP yang memiliki tugas malakukan klasterisasi terhadap hasil pembobotan nilai dari tiap-tiap dokumen dari dosen-dosen. Hasil klasterisasi tersebut selanjutnya akan merujuk pada pemberian besaran nilai tunjangan yang di berikan kepada dosen yang membuat dan mengumpulkan dokumen-dokumen pengajaran tesebut. Untuk membantu klasterisasi digunakan algoritma K-Means Clustering adalah salah satu teknik dari data mining dengan metode clustering non hirarki didalam prosesnya berusaha mempartisi data-data yang ada ke dalam bentuk klaster. Penelitian ini diharapkan dapat membantu proses klasterisasi dengan nilai yang mendekati karakteristik menjadi lebih efektif. Ketepatan prediksi yang dilakukan oleh algortima K-means terhadap 15 data mengalami perbedaan ketepatan, hanya sebanyak 53.33% akurasi prediksi bernilai benar.

 Artículos similares

       
 
Min Hu, Fan Zhang and Huiming Wu    
Various abnormal scenarios might occur during the shield tunneling process, which have an impact on construction efficiency and safety. Existing research on shield tunneling construction anomaly detection typically designs models based on the characteris... ver más
Revista: Applied Sciences

 
Yilei Wang, Yuelin Hu, Wenliang Xu and Futai Zou    
Dark web vendor identification can be seen as an authorship aliasing problem, aiming to determine whether different accounts on different markets belong to the same real-world vendor, in order to locate cybercriminals involved in dark web market transact... ver más
Revista: Applied Sciences

 
Margarida Mendonça and Álvaro Figueira    
As social media (SM) becomes increasingly prevalent, its impact on society is expected to grow accordingly. While SM has brought positive transformations, it has also amplified pre-existing issues such as misinformation, echo chambers, manipulation, and ... ver más
Revista: Informatics

 
Hamad Almaghrabi, Ben Soh and Alice Li    
Effective and efficient use of information and communication technology (ICT) systems in the administration of educational organisations is crucial to optimise their performance. Earlier research on the identification and analysis of ICT users? satisfact... ver más
Revista: Information

 
George Papageorgiou, Vangelis Sarlis and Christos Tjortjis    
This study utilized advanced data mining and machine learning to examine player injuries in the National Basketball Association (NBA) from 2000?01 to 2022?23. By analyzing a dataset of 2296 players, including sociodemographics, injury records, and financ... ver más
Revista: Information