Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Energies  /  Vol: 11 Núm: 7 Par: July (2018)  /  Artículo
ARTÍCULO
TITULO

Practical Analysis and Design of a Battery Management System for a Grid-Connected DC Microgrid for the Reduction of the Tariff Cost and Battery Life Maximization

Robert Salas-Puente    
Silvia Marzal    
Raul Gonzalez-Medina    
Emilio Figueres and Gabriel Garcera    

Resumen

This study is focused on two areas: the design of a Battery Energy Storage System (BESS) for a grid-connected DC Microgrid and the power management of that microgrid. The power management is performed by a Microgrid Central Controller (MGCC). A Microgrid operator provides daily information to the MGCC about the photovoltaic generation profile, the load demand profile, and the real-time prices of the electricity in order to plan the power interchange between the BESS and the main grid, establishing the desired state of charge (SOC) of the batteries at any time. The main goals of the power management strategy under study are to minimize the cost of the electricity that is imported from the grid and to maximize battery life by means of an adequate charging procedure, which sets the charging rate as a function of the MG state. Experimental and simulation results in many realistic scenarios demonstrate that the proposed methodology achieves a proper power management of the DC microgrid.