Resumen
Atmosperic profiles derived from Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) radio occultation (RO) measurements make up for the lack of operational radiosonde soundings with a high spatiotemporal distribution, and their performance over China is assessed in this paper. COSMIC-retrieved atmospheric wet profiles from 2014 to 2015 are compared to the contemporaneous radiosonde profiles from 120 stations, and the vertical mean differences are used. The results show that the vertical mean biases of temperature, pressure and vapor pressure are -0.10 K, 0.69 hPa and -0.01 hPa, respectively, and that for refractivity is 0.17 N. Moreover, the temperature differences are positively correlated with station altitude, yet both the pressure and vapor pressure differences are negatively correlated with station latitude, as is the refractivity difference. The large temperature difference arising from the Qinghai-Tibet Plateau (QTP) region may be associated with the complex topography of the area and the limitations in the background model used in the COSMIC profile retrieval. Furthermore, negative refractivity bias between COSMIC and radiosonde data occurs below 5 km and is large in wet southern China, with a value of less than 1%. This result may be related to more humid conditions and super-refraction.