Resumen
The knowledge of hydraulic fracture morphology is significant for the analysis of fracture mechanisms. This paper utilizes passive Ultrasonic Travel-time Tomography (UTT) to characterize the hydraulic fracture. We constructed a velocity model based on X-ray computerized tomography (X-CT) images scanned on a real hydraulically fractured shale column. Then, ray-paths and travel times corresponding to the source-receiver configuration were calculated by curved ray-tracing schemes. Lastly, we performed tomographic inversions using total variation regularization (TVR). The simulation results showed that 3D passive UTT based on TVR is an accurate, efficient, and stable method to reconstruct the velocity structures with fractures, even in the case of sparse ray-coverage or high noise level. Meanwhile, we also verified that the passive UTT is a valid alternative to X-CT in depicting the hydraulic fracturing rock via a proper interpretation method.