Resumen
Despite the fact that the adverse health effects due to the intake of lead have been well studied and widely recognized, lead contamination in drinking water has been reoccurring worldwide, with some incidents escalating into a public drinking water crisis. As lead contamination is often related to lead-based pipes close to or inside homes, it is not realistic, at least in the near term, to remove and replace all lead connection pipes and lead-based plumbing. Effective monitoring of lead concentration at consumers’ water taps remains critical for providing consumers with first-hand information and preventing potential wide-spread lead contamination in drinking water. This review paper examines the existing common technologies for laboratory testing and on-site measuring of lead concentrations. As the conventional analytical techniques for lead detection require using expensive instruments, as well as a high time for sample preparation and a skilled operator, an emphasis is placed on reviewing ion-selective electrode (ISE) technology due to its superior performance, low cost, ease of use, and its promising potential to be miniaturized and integrated into standalone sensing units. In a holistic way, this paper reviews and discusses the background, different types of ISEs are reviewed and discussed, namely liquid-contact ISEs and solid-contact ISEs. Along with the potential opportunities for further research, the limitations and unique challenges of ISEs for lead detection are also discussed in detail.