Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Classification of areas associated with soybean yield and agrometeorological variables through fuzzy clustering

Everton Coimbra de Araújo    
Jerry A. Johann    
Miguel A. Uribe-Opazo    
Eduardo C.G. Camargo    

Resumen

This study aimed to apply an approach based on fuzzy clustering for the classification of areas associated with soybean yield combined with the following agrometeorological variables: rainfall, average air temperature and average global solar radiation. The study was conducted with 48 municipalities in the western region of Paraná State, Brazil, with data from the crop-year 2007/2008. Through the fuzzy c-means algorithm, it was possible to form groups of municipalities that were similar in soybean yield using the Method of Decision by the Higher Degree of Relevance (MDMGP) and Method of Decision by Threshold ß (ß MDL). Subsequently, the identification of the appropriate number of clusters was obtained using Modified Partition Entropy (MPE). To measure the degree of similarity for each cluster, the Cluster Similarity Index (ISCl) was constructed and implemented. From the perspective of this study, the method used was adequate, allowing the identification of clusters of municipalities with degrees of similarities between 63 and 94%.Este trabajo tuvo como objetivo aplicar un enfoque basado en el análisis de agrupamiento fuzzy para la clasificación de áreas asociadas con la productividad de la soya, juntamente con las variables meteorológicas: nivel de precipitaciones, temperatura media del aire y la media de la radiación solar. El estudio se llevó a cabo con la participación de 48 municipios de la región oeste del Estado de Paraná, Brasil, con los datos de la temporada de cultivo del año 2007/2008. Mediante el algoritmo Fuzzy C-Means, fue posible formar grupos de municipios similares al rendimiento de la soya, utilizando el método de decisión de mayor grado de relevancia (MDMGP) y el método de decisión por Threshold ß (MDL ß). Seguidamente, se obtuvo la identificación del número apropiado de conglomerados utilizando la entropía de particiones modificada. Para medir el grado de similitud de cada grupo, se definió el Índice de Similitud de Agrupamiento (ISCl). Dentro de la perspectiva de este estudio, el método utilizado se presentó adecuado, lo que permitió identificar grupos de municipios con grados de similitudes en el orden de 63 a 94%.

 Artículos similares

       
 
Guang Han, Ping Zhai, Liqun Zhu and Kongqing Li    
With the economic development and rising living standards in rural China, the amount of household waste generated continues to increase, causing serious pollution to the environment and risks to public health. Promoting the classification of rural househ... ver más
Revista: Agriculture

 
Dingde Xu, Chen Qing, Yang Chen, Jia He and Fengwan Zhang    
Garbage classification is significant to alleviate the pressure of household waste management in rural areas and promote green development. Based on the micro survey data of 2228 households in rural areas of Jiangsu Province, this paper discusses the imp... ver más
Revista: Agriculture

 
Andrzej Wójtowicz, Jan Piekarczyk, Marek Wójtowicz, Jaroslaw Jasiewicz, Slawomir Królewicz and Elzbieta Starzycka-Korbas    
Under natural conditions, mixed infections are often observed when two or more species of plant pathogens are present on one host. Thus, the detection and characterization of co-occurring pest species is a challenge of great importance. In this study, we... ver más
Revista: Agriculture

 
Ruonan Gao, Fengxiang Jin, Min Ji and Yanan Zuo    
Wheat stripe rust poses a serious threat to the quality and yield of wheat crops. Typically, the occurrence data of wheat stripe rust is characterized by small sample sizes, and the current research on severity identification lacks high-precision methods... ver más
Revista: Agriculture

 
Francisco Javier López-Escudero, Joaquín Romero, Rocío Bocanegra-Caro and Antonio Santos-Rufo    
Developing models to understand disease dynamics and predict the risk of disease outbreaks to facilitate decision making is an integral component of plant disease management. However, these models have not yet been developed for one of the most damaging ... ver más
Revista: Agriculture