Resumen
Photoautotrophic microalgae offer high promise for a tertiary treatment of livestock wastewater owing to their rapid growth and nutrient uptake. To screen better microalga for the tertiary treatment, batch photobioreactor tests were conducted using Chlorella emersonii, Chlorella sorokiniana, and Botryococcus braunii. This study evaluated their specific growth rates, CO2 utilization rates, and nutrient removal rates to provide appropriate selection guidelines. Based on statistical comparisons, results indicate that selecting the right microalgae was the key to success in the tertiary treatment since each microalga responded differently, even under the same light, temperature, and nutrient conditions. Among the tested species, Chlorella emersonii was found to present the fastest photoautotrophic growth, total inorganic carbon (TIC) utilization, and nutrient removal for livestock wastewater treatment. Regression results identified that its specific growth and total nitrogen removal rates were as high as 0.51 day-1 and 0.18 day-1, respectively. Estimated TIC utilization over the supplied TIC was much higher (~34%) than those of others (11%?18%). This systemic evaluation of rate-limiting factors provides a quantitative understanding of the kinetic-based selection strategy of microalgae to polish livestock wastewater with better effluent quality.