Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Water  /  Vol: 8 Núm: 12 Par: 0 (2016)  /  Artículo
ARTÍCULO
TITULO

Applicability of a Nu-Support Vector Regression Model for the Completion of Missing Data in Hydrological Time Series

Jakub Langhammer    
Julius Cesák    

Resumen

This paper analyzes the potential of a nu-support vector regression (nu-SVR) model for the reconstruction of missing data of hydrological time series from a sensor network. Sensor networks are currently experiencing rapid growth of applications in experimental research and monitoring and provide an opportunity to study the dynamics of hydrological processes in previously ungauged or remote areas. Due to physical vulnerability or limited maintenance, networks are prone to data outages, which can devaluate the unique data sources. This paper analyzes the potential of a nu-SVR model to simulate water levels in a network of sensors in four nested experimental catchments in a mid-latitude montane environment. The model was applied to a range of typical runoff situations, including a single event storm, multi-peak flood event, snowmelt, rain on snow and a low flow period. The simulations based on daily values proved the high efficiency of the nu-SVR modeling approach to simulate the hydrological processes in a network of monitoring stations. The model proved its ability to reliably reconstruct and simulate typical runoff situations, including complex events, such as rain on snow or flooding from recurrent regional rain. The worst model performance was observed at low flow periods and for single peak flows, especially in the high-altitude catchments.

 Artículos similares

       
 
Aikaterini Lyra, Athanasios Loukas, Pantelis Sidiropoulos and Lampros Vasiliades    
This study presents the projected future evolution of water resource balance and nitrate pollution under various climate change scenarios and climatic models using a holistic approach. The study area is Almyros Basin and its aquifer system, located in Ce... ver más
Revista: Water

 
Rafiu Oyelakin, Wenyu Yang and Peter Krebs    
Fitting probability distribution functions to observed data is the standard way to compute future design floods, but may not accurately reflect the projected future pattern of extreme events related to climate change. In applying the latest coupled model... ver más
Revista: Water

 
Zhaoyue Ma, Yong Zhao, Wenjing Zhao, Jiajun Feng, Yingying Liu, Jin Yeu Tsou and Yuanzhi Zhang    
This study on total suspended matter (TSM) in the Pearl River Estuary established a regression analysis model using Landsat 8 reflectance and measured TSM data, crucial for environmental management and engineering projects. High coefficients of determina... ver más

 
Heba El-Bagoury and Ahmed Gad    
Flooding is a natural disaster with extensive impacts. Desert regions face altered flooding patterns owing to climate change, water scarcity, regulations, and rising water demands. This study assessed and predicted flash flood hazards by calculating disc... ver más
Revista: Water

 
Shuqi Zhang, Tong Zhi, Hongbo Zhang, Chiheng Dang, Congcong Yao, Dengrui Mu, Fengguang Lyu, Yu Zhang and Shangdong Liu    
The hydrological series in the Loess Plateau region has exhibited shifts in trend, mean, and/or variance as the environmental conditions have changed, indicating a departure from the assumption of stationarity. As the variations accumulate, the compound ... ver más
Revista: Water