Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Determining the conditions for decreasing cutting force and temperature during machining

Fedir N?vik?v    
Vladimir Polyansky    
Valentin Shkurupiy    
Dmytro Novikov    
Andrii Hutorov    
Yevhen Ponomarenko    
Oksana ?. Yermolenko    
Oleksii ?. Yermolenko    

Resumen

The theoretical approach to calculating and controlling the force and temperature parameters of edge cutting and abrasive machining processes taking into account the provision of the minimum possible power consumption of the cutting process is given. The conditions for reducing cutting force and temperature and improving the quality and rate of grinding and edge cutting machining are theoretically determined. They consist mainly in reducing the relative shear angle of the machined material and, accordingly, power consumption by increasing the cutting capacity of the tool. It is analytically found that in grinding, cutting force and temperature are greater than in edge cutting machining due to the intense friction of the grinding wheel bond with the machined material and the presence of negative rake angles of cutting grains. It is shown that cutting temperature during grinding can be reduced using the multipass grinding pattern, as well as patterns of high-velocity creep-feed wheel-face and double-disc grinding. On this basis, the approach to creating technologies of effective high-velocity defect-free edge cutting and abrasive machining of machine parts and carbide cutting tools is developed.The developed technology of form grinding on the modern HOFLER RAPID 1250 gear grinding machine using a special highly porous form abrasive wheel tapered on both sides received practical application. This wheel has a high cutting capacity in conditions of high-velocity creep-feed grinding. Compared to the conventional method of gear grinding by the generating process, carried out under conditions of multipass grinding, this allowed increasing machining rate up to 5 times. The technology of high-velocity creep-feed external grinding of multipoint carbide cutting tools (milling cutters, reamers) with high-strength metal-bonded diamond wheels using the electrical discharge dressing method is developed. This made it possible to increase the rate by 2?3 times and provide high-quality defect-free machining of carbide tools

 Artículos similares

       
 
Puti Yan, Zhen Cao, Jiangbo Peng, Chaobo Yang, Xin Yu, Penghua Qiu, Shanchun Zhang, Minghong Han, Wenbei Liu and Zuo Jiang    
A flame?s structural feature is a crucial parameter required to comprehensively understand the interaction between turbulence and flames. The generation and evolution processes of the structure feature have rarely been investigated in lean blowout (LBO) ... ver más
Revista: Aerospace

 
Rossana Caroni, Monica Pinardi, Gary Free, Daniela Stroppiana, Lorenzo Parigi, Giulio Tellina, Mariano Bresciani, Clément Albergel and Claudia Giardino    
A study was carried out to investigate the effects of wildfires on lake water quality using a source dataset of 2024 lakes worldwide, covering different lake types and ecological settings. Satellite-derived datasets (Lakes_cci and Fire_cci) were used and... ver más
Revista: Applied Sciences

 
Jun-Seong Kim, Kun-Woo Kim, Se-Ro Kim, Tae-Gyeong Woo, Joong-Wha Chung, Seong-Won Yang and Seong-Yong Moon    
Echocardiography is a medical examination that uses ultrasound to assess and diagnose the structure and function of the cardiac. Through the use of ultrasound waves, this examination allows medical professionals to create visualizations of the cardiac mu... ver más
Revista: Applied Sciences

 
Matija Milanic and Rok Hren    
The Adding-Doubling (AD) algorithm is a general analytical solution of the radiative transfer equation (RTE). AD offers a favorable balance between accuracy and computational efficiency, surpassing other RTE solutions, such as Monte Carlo (MC) simulation... ver más
Revista: Algorithms

 
Donghae Baek, Il Won Seo, Jun Song Kim, Sung Hyun Jung and Yuyoung Choi    
The dispersion coefficients are crucial in understanding the spreading of pollutant clouds in river flows, particularly in the context of the depth-averaged two-dimensional (2D) advection?dispersion equation (ADE). Traditionally, the 2D stream-tube routi... ver más
Revista: Water