Redirigiendo al acceso original de articulo en 16 segundos...
Inicio  /  Energies  /  Vol: 9 Núm: 12 Par: Decembe (2016)  /  Artículo
ARTÍCULO
TITULO

Mechanical Properties of Longmaxi Black Organic-Rich Shale Samples from South China under Uniaxial and Triaxial Compression States

Yusong Wu    
Xiao Li    
Jianming He and Bo Zheng    

Resumen

With the exploitation of shale gas booming all over the world, more and more studies are focused on the core technology, hydraulic fracturing, to improve commercial exploitation. Shale gas resources in China are enormous. In this research, a series of tests were carried out with samples of black organic-rich shale from the Lower Silurian Longmaxi formation, south China. Samples were drilled from different directions and were subjected to uniaxial and triaxial condition with various confining pressures, aiming at studying its rock mechanics properties, so as to provide basis for research and breakthrough of hydraulic fracturing technology. According to the results of the study, the development and distribution of shale?s bedding planes significantly impact its mechanical properties. Shale samples show obvious brittle characteristics under low confining pressure, and its mechanical behavior begins to transform from brittle to plastic characteristics with increasing confining pressure. Shale samples with different inclinations (ß) have different sensitivities to the confining pressure. As a result, samples with 45° inclinations (ß) are least sensitive. The strength of bedding planes is significantly lower than that of shale matrix, and tensile failure and shear failure generally tend to occur along the bedding planes. When hydraulic fracturing was conducted in shale formation with depth less than 2.25 km, corresponding to original in-situ of 60 MPa, cracks will preferably occur at first along the inclination (ß) angle of 45° from the maximum principal stress, and the failure mode is most likely to be shear failure without volumetric strain. And, different modes of failure will occur at different locations in the reservoir, depending on the orientation of bedding inclined from the principle stress, which can probably explain the phenomenon why there are fractures along and cross the bedding planes during hydraulic fracturing treatment. When hydraulic fracturing was conducted in shale formation with depth greater than 2.25 km, hydraulic fractures may not crack along the bedding surfaces to some extent.

 Artículos similares

       
 
Maria Valean, Daniela Lucia Manea, Claudiu Aciu, Florin Popa, Lumini?a Monica Ple?a, Elena Jumate and Gabriel Furtos    
The rising concern for the environment and the need for a sustainable economic model has stimulated experimentation in the field of construction materials, notably in replacing certain components from cementitious materials with construction and demoliti... ver más
Revista: Buildings

 
Baojun Cheng, Xiaowei Gu, Haoyue Hu, Yaning Kong and Pengyu Huang    
There are some limitations in the application of tuff powder as a supplementary cementitious material (SCM). Exploring its feasibility in new fields will consume a large amount of silica-alumina mine solid wastes. This study has investigated the mechanic... ver más
Revista: Buildings

 
Hongjun Li, Baoyun Zhao, Zhengjun Hou and Hongyao Min    
The foundations of bridges and other tall buildings are often subjected to cyclic loads. Therefore, it is essential to investigate the mechanical properties of rock?concrete composite foundations under cyclic loads. In this paper, uniaxial cyclic loading... ver más
Revista: Buildings

 
Yan?e Yang, Bo Pang, Yunsheng Zhang, Minghui Wang, Gaixia Miao and Aoxiang Zhou    
The properties of a large number of concrete infrastructures in China are deteriorating year by year, raising the need for repairing and strengthening these infrastructures. By introducing waterborne polymers into a cement concrete system, brittle cracks... ver más
Revista: Buildings

 
Xiaoyun Song, Heping Zheng, Lei Xu, Tingting Xu and Qiuyu Li    
An investigation was carried out to study the influence of two types of anti-washout admixtures (AWAs) on the performance of underwater concrete, specifically, workability and washout resistance. The tested AWAs were hydroxypropyl methylcellulose (HPMC) ... ver más
Revista: Buildings