Resumen
An effective way to control post-harvest rotting of table grapes is the use of sulfur dioxide (SO2). However, under certain conditions, the use of SO2 can cause significant loss, mainly associated with bleaching of the berries. Therefore, it is believed that the use of bags with and without copper nanoparticles that modify the atmosphere will allow for the control of Botrytis cinerea as well as the ability to dispense with the use of sulfur dioxide generation. The objective of this test is to evaluate the use of bags with and without copper nanoparticles that modify atmosphere and to evaluate their ability to control post-harvest B. cinerea, as well as their effect on the conservation of physical and chemical characteristics of table grapes. The results indicate that the use of air bags with or without copper nanoparticles that modify the atmosphere and do not require sulfur dioxide generation were able to control B. cinerea post-harvest and preserve the physical and chemical parameters of grape table cv. ?Thompson seedless?. Significant differences were seen in parameters such as whitening, dehydration and incidence of stalk rot. A group of panelists could not distinguish differences in the sensory attributes and acceptability of the grapes regardless of treatment.