Resumen
The interactions between 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIM][TFS]) and nano-Al2O3 are studied using high-pressure infrared spectroscopy. The thickness of the [BMIM][TFS] interfacial layer on the aluminum oxide are adjusted by controlling the number of washes with ethanol. In contrast to the results obtained under ambient pressure, local structures of both the cations and anions of [BMIM][TFS] are disturbed under high pressures. For example, bands due to C-H stretching motions display remarkable blue-shifts in frequency as the pressure of the [BMIM][TFS]/Al2O3 composites is increased to 0.4 GPa. The bands then undergo mild shifts in frequency upon further compression. The discontinuous jump occurring around 0.4 GPa becomes less obvious when the amount of ionic liquid on the Al2O3 is reduced by washing with ethanol. The nano-Al2O3 with surfaces may weaken the cation/anion interactions in the interfacial area as a result of the formation of pressure-enhanced Al2O3/ionic liquid interactions under high pressures.