Resumen
In this article, we present a novel structural health monitoring system based on a wireless sensor network for GNSS (global navigation satellite system) receivers. The GNSS network presented here consists of three GNSS rover stations and one base station that are deployed at the Neckartal bridge on the Autobahn A81 in southwest Germany. The newly-developed GNSS sensor nodes support satellite data logging up to a sampling rate of 20 Hz. Due to the ultra-low-power consumption achieved by the wake-up receiver during inactive periods, the nodes offer a lifetime from 20 to almost 200 days, without energy harvesting and depending on the satellite data logging period. By performing differential post-processing, precise positioning information in the millimeter range could be achieved. Using the GNSS sensors, we determined resonant frequencies at 0.33 Hz and 1.31 Hz, mainly in the lateral direction of the bridge. To verify the GNSS results, we placed an accelerometer on the bridge. The frequencies detected by the acceleration sensor correspond well to the frequencies found by the GNSS sensors, although the accelerometer measured further higher frequencies as it is probably more sensitive to small amplitudes.