Resumen
Wildland fires are responsible for large socio-economic impacts. Fires affect the environment, damage structures, threaten lives, cause health issues, and involve large suppression costs. These impacts can be mitigated via accurate fire spread forecast to inform the incident management team. We show that a fire forecast system based on a numerical weather prediction (NWP) model coupled with a wildland fire behavior model can provide this forecast. This was illustrated with the Chimney Tops II wildland fire responsible for large socio-economic impacts. The system was run at high horizontal resolution (111 m) over the region affected by the fire to provide a fine representation of the terrain and fuel heterogeneities and explicitly resolve atmospheric turbulence. Our findings suggest that one can use the high spatial resolution winds, fire spread and smoke forecast to minimize the adverse impacts of wildland fires.