Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Energies  /  Vol: 11 Núm: 6 Par: June (2018)  /  Artículo
ARTÍCULO
TITULO

Fully-distributed Load Frequency Control Strategy in an Islanded Microgrid Considering Plug-In Electric Vehicles

Xiao Qi    
Yan Bai    
Huanhuan Luo    
Yiqing Zhang    
Guiping Zhou and Zhonghua Wei    

Resumen

With large-scale integration of electric vehicles, this paper investigates the load frequency control problem in an islanded microgrid with plug-in electric vehicles (PEVs), which can be regarded as mobile battery energy storages to provide a valuable contribution to frequency regulation. A novel fully-distributed control strategy is proposed to achieve fast frequency regulation of islanded microgrids and effective coordination control of distributed energy sources. Firstly, distributed control based on an improved linear active disturbance rejection algorithm is realized through a multi-agent system, and it greatly enhances the anti-disturbance capability of the microgrid. Then, in order to guarantee the effectiveness of PEVs in frequency regulation, PEVs are controlled following the controllable power rate (CPR) calculated from the consensus-based multi-agent system. Furthermore, the system control construction in this paper is well designed to avoid the negative effects caused by system communication time delay. Finally, numerical simulations under different disturbances are carried out to demonstrate the effectiveness of the proposed control strategy in comparison with other previous control strategies.