Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Ciéncia Florestal  /  Vol: 25 Núm: 4 Par: 0 (2015)  /  Artículo
ARTÍCULO
TITULO

EMPREGO DA ANÁLISE DISCRIMINANTE DE FISHER PARA CLASSIFICAR FISIONOMIAS FLORESTAIS NO BIOMA PAMPA

Ricardo V. Kilca    
Solon Jonas Longhi    
Gustavo Schwartz    
Adriano M. Souza    
Julio C. Wojciechowski    

Resumen

http://dx.doi.org/10.5902/1980509820587A análise discriminante de Fisher (ADF) busca realizar uma combinação linear das variáveis independentes com objetivo de maximizar a separação de grupos preditos em um espaço reduzido bidimensional e ainda permitir que novas observações sejam classificadas ou não dentro dos grupos conhecidos a priori. Empregou-se a ADF utilizando oito variáveis estruturais obtidas de inventários sistemáticos do componente arbóreo (DAP>10 cm) realizados em cinco tipos florestais (total de 5 ha) distintos no bioma Pampa do sul do Brasil. Posteriormente foram sorteadas 10 novas amostras provenientes das mesmas fitofisionomias para realizar a validação do modelo. A AD gerou quatro funções discriminantes (FDs), sendo que as duas primeiras funções desempenharam uma capacidade de 88,4% de habilidade para discriminação dos grupos: FD1 = 74,4% (autovalor FD1 = 33,99) e FD2 = 14% (autovalor FD2 = 6,34). Os atributos estruturais que estiveram mais relacionados com a FD1 foram riqueza de espécies, altura comercial e altura total. Em FD2 prevaleceu a área basal e o diâmetro máximo atingido pelo caule. As outras FDs e variáveis estruturais apresentaram menor capacidade de discriminação dos grupos. A AD classificou 100% dos casos nos respectivos grupos preditos, revelando a alta eficiência das variáveis discriminadoras escolhidas. As novas amostras também foram classificadas em seus respectivos grupos, porém, com pequeno grau de erro. O uso da AD para a classificação das florestas deveria ser incentivado porque o método é simples e os resultados são estatisticamente mais confiáveis do que outros métodos descritivos da estatística multivariada que são amplamente utilizados.