Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Water  /  Vol: 9 Núm: 7 Par: 0 (2017)  /  Artículo
ARTÍCULO
TITULO

Simulation of Typhoon-Induced Storm Tides and Wind Waves for the Northeastern Coast of Taiwan Using a Tide?Surge?Wave Coupled Model

Wei-Bo Chen    
Lee-Yaw Lin    
Jiun-Huei Jang    
Chih-Hsin Chang    

Resumen

The storm tide is a combination of the astronomical tide and storm surge, which is the actual sea water level leading to flooding in low-lying coastal areas. A full coupled modeling system (Semi-implicit Eulerian-Lagrangian Finite-Element model coupled with Wind Wave Model II, SELFE-WWM-II) for simulating the interaction of tide, surge and waves based on an unstructured grid is applied to simulate the storm tide and wind waves for the northeastern coast of Taiwan. The coupled model was driven by the astronomical tide and consisted of main eight tidal constituents and the meteorological forcings (air pressure and wind stress) of typhoons. SELFE computes the depth-averaged current and water surface elevation passed to WWM-II, while WWM-II passes the radiation stress to SELFE by solving the wave action equation. Hindcasts of wind waves and storm tides for five typhoon events were developed to validate the coupled model. The detailed comparisons generally show good agreement between the simulations and measurements. The contributions of surge induced by wave and meteorological forcings to the storm tide were investigated for Typhoon Soudelor (2015) at three tide gauge stations. The results reveal that the surge contributed by wave radiation stress was 0.55 m at Suao Port due to the giant offshore wind wave (exceeding 16.0 m) caused by Typhoon Soudelor (2015) and the steep sea-bottom slope. The air pressure resulted in a 0.6 m surge at Hualien Port because of an inverted barometer effect. The wind stress effect was only slightly significant at Keelung Port, contributing 0.22 m to the storm tide. We conclude that wind waves should not be neglected when modeling typhoon-induced storm tides, especially in regions with steep sea-bottom slopes. In addition, accurate tidal and meteorological forces are also required for storm tide modeling.

 Artículos similares

       
 
Chih-Hua Chang, John F. Harrison and Yu-Chi Huang    
This study examines the impacts of storm-triggered landslides on downstream sediment and turbidity responses in the Gaoping River Basin, Taiwan using the Soil and Water Assessment Tool (SWAT). Attention is given to analyzing the increased and altered bas... ver más
Revista: Water