Resumen
Due to the complex terrain, sparse precipitation observation sites, and uneven distribution of precipitation in the northeastern slope of the Qinghai–Tibet Plateau, it is necessary to establish a precipitation estimation method with strong applicability. In this study, the precipitation observation data from meteorological stations in the northeast slope of the Qinghai–Tibet Plateau and 11 geographical and topographic factors related to precipitation distribution were used to analyze the main factors affecting precipitation distribution. Based on the above, a multivariate linear regression precipitation estimation model was established. The results revealed that precipitation is negatively related to latitude and elevation, but positively related to longitude and slope for stations with an elevation below 1700 m. Meanwhile, precipitation shows positive correlations with both latitude and longitude, and negative correlations with elevation for stations with elevations above 1700 m. The established multivariate regression precipitation estimating model performs better at estimating the mean annual precipitation in autumn, summer, and spring, and is less accurate in winter. In contrast, the multivariate regression mode combined with the residual error correction method can effectively improve the precipitation forecast ability. The model is applicable to the unique natural geographical features of the northeast slope of the Qinghai–Tibet Plateau. The research results are of great significance for analyzing the temporal and spatial distribution pattern of precipitation in complex terrain areas.