Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Forest Systems  /  Vol: 27 Núm: 3 Par: 0 (2018)  /  Artículo
ARTÍCULO
TITULO

Stand types discrimination comparing machine-learning algorithms in Monteverde, Canary Islands.

Miguel Garcia-Hidalgo    
Ángela Blázquez-Casado    
Beatriz Águeda    
Francisco Rodriguez    

Resumen

Aim of study: The main objective is to determine the best machine-learning algorithm to classify the stand types of Monteverde forests combining LiDAR, orthophotography, and Sentinel-2 data, thus providing an easy and cheap method to classify Monteverde stand types.Area of study: 1500 ha forest in Monteverde, North Tenerife, Canary Islands.Material and methods: RF, SVML, SVMR and ANN algorithms are used to classify the three Monteverde stand types.  Before training the model, feature selection of LiDAR, orthophotography, and Sentinel-2 data through VSURF was carried out.  Comparison of its accuracy was performed.Main results: Five LiDAR variables were found to be the most efficient for classifying each object, while only one Sentinel-2 index and one Sentinel-2 band was valuable.  Additionally, standard deviation and mean of the Red orthophotography colour band, and ratio between Red and Green bands were also found to be suitable.  SVML is confirmed as the most accurate algorithm (0.904, 0.041 SD) while ANN showed the lowest value of 0.891 (0.073 SD).  SVMR and RF obtain 0.902 (0.060 SD) and 0.904 (0.056 SD) respectively.  SVML was found to be the best method given its low standard deviation.Research highlights: The similar high accuracy values among models confirm the importance of taking into account diverse machine-learning methods for stand types classification purposes and different explanatory variables.  Although differences between errors may not seem relevant at a first glance, due to the limited size of the study area with only three plus two categories, such differences could be highly important when working at large scales with more stand types.ADDITIONAL KEY WORDSRF algorithm, SVML algorithm, SVMR algorithm, ANN algorithm, LiDAR, orthophotography, Sentinel-2ABBREVIATIONS USEDANN, artificial neural networks algorithm; Band04, Sentinel-2 band 04 image data; BR, brezal; DTHM, digital tree height model; DTHM-2016, digital tree height model based on 2016 LiDAR data; DTM, digital terrain model; DTM-2016, digital terrain model based on 2016 LiDAR data; FBA, fayal-brezal-acebiñal; FCC, canopy cover; HEIGHT-2009, maximum height based on 2009 LiDAR data; HGR, height growth based on 2009 and 2016 LiDAR data; LA, laurisilva; NDVI705, Sentinel-2 index image data; NMF, non-Monteverde forest; NMG, non-Monteverde ground; P95-2016, height percentile 95 based on 2016 LiDAR data; RATIO R/G, ratio between Red and Green bands orthophotograph data; RED, Red band orthophotograph data; Red-SD, standard deviation of the Red band orthophotograph data; RF, random forest algorithm; SVM, support vector machine algorithm; SVML, linear support vector machine algorithm; SVMR, radial support vector machine algorithm; VSURF, variable selection using random forest.

 Artículos similares

       
 
Bin Wang, Mingze Li, Wenyi Fan, Ying Yu and Jing M. Chen    
Net primary productivity (NPP) is a key component in the terrestrial ecosystem carbon cycle, and it varies according to stand age and site class index (SCI) for different forest types. Here we report an improved method for describing the relationships be... ver más
Revista: Forests

 
K. David Coates, Erin C. Hall and Charles D. Canham    
In Canada and elsewhere, logging practices in natural-origin forests have shifted toward retention systems where variable levels of mature trees are retained post-logging to promote a diversity of values. We examine multiple sites that experienced a wide... ver más
Revista: Forests

 
Irene De Pellegrin Llorente, Howard M. Hoganson, Marcella Windmuller-Campione and Steve Miller    
Forest management situations are intrinsically challenging due to the nature of being an interconnected and multi-faceted problem. Integrating ecological, social, and economic objectives is one of the biggest hurdles for forest planners. Often, decisions... ver más
Revista: Forests

 
Lars Drössler, Eric Agestam, Kamil Bielak, Malgorzata Dudzinska, Julia Koricheva, Mateusz Liziniewicz, Magnus Löf, Bill Mason, Hans Pretzsch, Sauli Valkonen and Klaas Wellhausen    
Pine-spruce forests are one of the commonest mixed forest types in Europe and both tree species are very important for wood supply. This study summarized nine European studies with Scots pine and Norway spruce where a mixed-species stand and both monocul... ver más
Revista: Forests

 
Matthew B. Russell, Stephanie R. Patton, David C. Wilson, Grant M. Domke and Katie L. Frerker    
The amount of biomass stored in forest ecosystems is a result of past natural disturbances, forest management activities, and current structure and composition such as age class distributions. Although natural disturbances are projected to increase in th... ver más
Revista: Forests