Redirigiendo al acceso original de articulo en 15 segundos...
Inicio  /  Atmósfera  /  Vol: 12 Núm: 1 Par: 0 (1999)  /  Artículo
ARTÍCULO
TITULO

A numerical investigation of a simple spectral atmospheric model

P. MARCUSSEN    
A. WIIN NIELSEN    

Resumen

A two-level quasi-nondivergent model containing 12 spectral components on a rectangular beta-plane is used to simulate a number of atmospheric phenomena. The nonlinear model contains two components that describe the zonal flow at each level permitting zonal winds with two maxima and two minima. The eddy fields at the two levels contain four components selected in such a way that the resulting eddy fields have transports of both sensible heat and momentum. The model permits a full description of energy generations, conversions and dissipations, because the eddy components are selected with such wave numbers that interactions take place between, the eddies and the zonal fields. Diabatic heating, topographical effects and dissipation of kinetic energy are included in the model. A limitation of the model is that it contains only one wave number in the zonal direction. The model is used to illustrate nonlinear developments of baroclinic waves on various horizontal scales in a case of forcing on the zonal components alone. With a long channel it is possible to simulate the development of long stationary waves forced by topography and/or heating. For special definitions of the heating on both the zonal and the eddy modes one may simulate the formation and maintenance of blocking situations as a result of interactions between the zonal components and the eddies. The eddy components will normally go into periodic or almost periodic motion in the phase domain unless the model is forced by heating, topography and friction. These unforced motions and their periods are investigated. We also show that the type of atmospheric circulation may change significantly as a function of the position of the maximum heating in the south-north direction, illustrating a change from single to double jets and the resulting change in the intensity and position of the waves.

 Artículos similares

       
 
Wenjie Shen, Suofang Wang, Mengyuan Wang, Jia Suo and Zhao Zhang    
Improving airflow pressure is of great significance for the cooling and sealing of aeroengines. In a co-rotating cavity with radial inflow, vortex reducers are used to decrease the pressure drop. However, the performance of traditional vortex reducers is... ver más
Revista: Aerospace

 
Panagiotis D. Kordas, George N. Lampeas and Konstantinos T. Fotopoulos    
The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design ... ver más
Revista: Aerospace

 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Mengxiang Li, Guo Wang, Kun Liu, Yue Lu and Jiaxia Wang    
The safety assessment of ship cargo securing systems is of significant importance in preventing casualties, vessel instability, and economic losses resulting from the failure of securing systems during transportation in adverse sea conditions. In this st... ver más

 
Liyuan Wang, Pengfei Zhou, Jiayang Gu and Yapeng Li    
This study focuses on a large-scale cruise ship as the subject of research, with a particular emphasis on conditions not covered in the MSC.1/Circ.1533 guidelines. The investigation explores the impact of specific motion states of the cruise ship, includ... ver más