Resumen
Quantum-behaved particle swarm optimization (QPSO) is an efficient and powerful population-based optimization technique, which is inspired by the conventional particle swarm optimization (PSO) and quantum mechanics theories. In this paper, an improved QPSO named SQPSO is proposed, which combines QPSO with a selective probability operator to solve the economic dispatch (ED) problems with valve-point effects and multiple fuel options. To show the performance of the proposed SQPSO, it is tested on five standard benchmark functions and two ED benchmark problems, including a 40-unit ED problem with valve-point effects and a 10-unit ED problem with multiple fuel options. The results are compared with differential evolution (DE), particle swarm optimization (PSO) and basic QPSO, as well as a number of other methods reported in the literature in terms of solution quality, convergence speed and robustness. The simulation results confirm that the proposed SQPSO is effective and reliable for both function optimization and ED problems.