Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Water  /  Vol: 8 Núm: 5 Par: 0 (2016)  /  Artículo
ARTÍCULO
TITULO

Hydrological Evaluation of Lake Chad Basin Using Space Borne and Hydrological Model Observations

Willibroad Gabila Buma    
Sang-Il Lee    
Jae Young Seo    

Resumen

Sustainable water resource management requires the assessment of hydrological changes in response to climate fluctuations and anthropogenic activities in any given area. A quantitative estimation of water balance entities is important to understand the variations within a basin. Water resources in remote areas with little infrastructure and technological knowhow suffer from poor documentation, rendering water management difficult and unreliable. This study analyzes the changes in the hydrological behavior of the Lake Chad basin with extreme climatic and environmental conditions that hinder the collection of field observations. Total water storage (TWS) from the Gravity Recovery and Climate Experiment (GRACE), lake level variations from satellite altimetry, and water fluxes and soil moisture from Global Land Data Assimilation System (GLDAS) were used to study the spatiotemporal variability of the hydrological parameters of the Lake Chad basin. The estimated TWS varies in a similar pattern as the lake water level. TWS in the basin area is governed by the lake?s surface water. The subsurface water volume changes were derived by combining the altimetric lake volume with the TWS over the drainage basin. The results were compared with groundwater outputs from WaterGAP Global Hydrology Model (WGHM), with both showing a somewhat similar pattern. These results could provide an insight to the availability of water resources in the Lake Chad basin for current and future management purposes.

 Artículos similares

       
 
Rafiu Oyelakin, Wenyu Yang and Peter Krebs    
Fitting probability distribution functions to observed data is the standard way to compute future design floods, but may not accurately reflect the projected future pattern of extreme events related to climate change. In applying the latest coupled model... ver más
Revista: Water

 
Bingyu Zhang, Yingtang Wei, Ronghua Liu, Shunzhen Tian and Kai Wei    
The calibration and validation of hydrological model simulation performance and model applicability evaluation in Gansu Province is the foundation of the application of the flash flood early warning and forecasting platform in Gansu Province. It is diffi... ver más
Revista: Water

 
Ali Uzunlar and Muhammet Omer Dis    
The hydrological cycle should be scrutinized and investigated under recent climate change scenarios to ensure global water management and to increase its utilization. Although the FAO proposed the use of the Penman?Monteith (PM) equation worldwide to pre... ver más
Revista: Water

 
Futo Ueda, Hiroto Tanouchi, Nobuyuki Egusa and Takuya Yoshihiro    
River water-level prediction is crucial for mitigating flood damage caused by torrential rainfall. In this paper, we attempt to predict river water levels using a deep learning model based on radar rainfall data instead of data from upstream hydrological... ver más
Revista: Water

 
Fahad Alshehri and Mark Ross    
This hydrological study investigated a combined rating methodology tested on a 14,090 km2 area in Southwest Florida. The approach applied the Hydrological Simulation Program-Fortran (HSPF) over a 23-year period and was validated by 28 stream gauging stat... ver más
Revista: Water