Redirigiendo al acceso original de articulo en 15 segundos...
ARTÍCULO
TITULO

Artificial neural networks incorporating cost significant Items towards enhancing estimation for (life-cycle) costing of construction projects

Ayedh Alqahtani    
Andrew Whyte    

Resumen

Industrial application of life-cycle cost analysis (LCCA) is somewhat limited, with techniques deemed overly theoretical, resulting in a reluctance to realise (and pass onto the client) the advantages to be gained from objective (LCCA) comparison of (sub)component material specifications. To address the need for a user-friendly structured approach to facilitate complex processing, the work described here develops a new, accessible framework for LCCA of construction projects; it acknowledges Artificial Neural Networks (ANNs) to compute the whole-cost(s) of construction and uses the concept of cost significant items (CSI) to identify the main cost factors affecting the accuracy of estimation. ANNs is a powerful means to handle non-linear problems and subsequently map between complex input/output data, address uncertainties. A case study documenting 20 building projects was used to test the framework and estimate total running costs accurately. Two methods were used to develop a neural network model; firstly a back-propagation method was adopted (using MATLAB SOFTWARE); and secondly, spread-sheet optimisation was conducted (using Microsoft Excel Solver). The best network was established as consisting of 19 hidden nodes, with the tangent sigmoid used as a transfer function of NNs model for both methods. The results find that in both neural network models, the accuracy of the developed NNs model is 1% (via Excel-solver) and 2% (via back-propagation) respectively.

 Artículos similares

       
 
Dimitris Papadopoulos and Vangelis D. Karalis    
Sample size is a key factor in bioequivalence and clinical trials. An appropriately large sample is necessary to gain valuable insights into a designated population. However, large sample sizes lead to increased human exposure, costs, and a longer time f... ver más
Revista: Applied Sciences

 
Jun Yeong Kim, Chang Geun Song, Jung Lee, Jong-Hyun Kim, Jong Wan Lee and Sun-Jeong Kim    
In this paper, we propose a learning model for tracking the isolines of fluid based on the physical properties of particles in particle-based fluid simulations. Our method involves analyzing which weights, closely related to surface tracking among the va... ver más
Revista: Applied Sciences

 
Omar Abdulkhaleq Aldabash and Mehmet Fatih Akay    
An IDS (Intrusion Detection System) is essential for network security experts, as it allows one to identify and respond to abnormal traffic present in a network. An IDS can be utilized for evaluating the various types of malicious attacks. Hence, detecti... ver más
Revista: Applied Sciences

 
Daniel Einarson, Fredrik Frisk, Kamilla Klonowska and Charlotte Sennersten    
Machine learning (ML) is increasingly used in diverse fields, including animal behavior research. However, its application to ambiguous data requires careful consideration to avoid uncritical interpretations. This paper extends prior research on ringed m... ver más
Revista: Applied Sciences

 
Tahsin Koroglu and Elanur Ekici    
In recent years, wind energy has become remarkably popular among renewable energy sources due to its low installation costs and easy maintenance. Having high energy potential is of great importance in the selection of regions where wind energy investment... ver más
Revista: Applied Sciences