Redirigiendo al acceso original de articulo en 24 segundos...
ARTÍCULO
TITULO

Artificial neural networks incorporating cost significant Items towards enhancing estimation for (life-cycle) costing of construction projects

Ayedh Alqahtani    
Andrew Whyte    

Resumen

Industrial application of life-cycle cost analysis (LCCA) is somewhat limited, with techniques deemed overly theoretical, resulting in a reluctance to realise (and pass onto the client) the advantages to be gained from objective (LCCA) comparison of (sub)component material specifications. To address the need for a user-friendly structured approach to facilitate complex processing, the work described here develops a new, accessible framework for LCCA of construction projects; it acknowledges Artificial Neural Networks (ANNs) to compute the whole-cost(s) of construction and uses the concept of cost significant items (CSI) to identify the main cost factors affecting the accuracy of estimation. ANNs is a powerful means to handle non-linear problems and subsequently map between complex input/output data, address uncertainties. A case study documenting 20 building projects was used to test the framework and estimate total running costs accurately. Two methods were used to develop a neural network model; firstly a back-propagation method was adopted (using MATLAB SOFTWARE); and secondly, spread-sheet optimisation was conducted (using Microsoft Excel Solver). The best network was established as consisting of 19 hidden nodes, with the tangent sigmoid used as a transfer function of NNs model for both methods. The results find that in both neural network models, the accuracy of the developed NNs model is 1% (via Excel-solver) and 2% (via back-propagation) respectively.

 Artículos similares

       
 
Qirui Bo, Junwei Liu, Wenchang Shang, Ankit Garg, Xiaoru Jia and Kaiyue Sun    
Nowadays, the use of new compound chemical stabilizers to treat marine clay has gained significant attention. However, the complex non-linear relationship between the influencing factors and the unconfined compressive strength of chemically treated marin... ver más

 
Angel E. Muñoz-Zavala, Jorge E. Macías-Díaz, Daniel Alba-Cuéllar and José A. Guerrero-Díaz-de-León    
This paper reviews the application of artificial neural network (ANN) models to time series prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series analysis, and by outlining some of the most popular ANN arc... ver más
Revista: Algorithms

 
Dthenifer Cordeiro Santana, Gustavo de Faria Theodoro, Ricardo Gava, João Lucas Gouveia de Oliveira, Larissa Pereira Ribeiro Teodoro, Izabela Cristina de Oliveira, Fábio Henrique Rojo Baio, Carlos Antonio da Silva Junior, Job Teixeira de Oliveira and Paulo Eduardo Teodoro    
Using multispectral sensors attached to unmanned aerial vehicles (UAVs) can assist in the collection of morphological and physiological information from several crops. This approach, also known as high-throughput phenotyping, combined with data processin... ver más
Revista: Algorithms

 
Miniyenkosi Ngcukayitobi, Lagouge Kwanda Tartibu and Flávio Bannwart    
Waste heat recovery stands out as a promising technique for tackling both energy shortages and environmental pollution. Currently, this valuable resource, generated through processes like fuel combustion or chemical reactions, is often dissipated into th... ver más
Revista: AI

 
Tomasz Gajewski and Pawel Skiba    
The main goal of this work is to combine the usage of the numerical homogenization technique for determining the effective properties of representative volume elements with artificial neural networks. The effective properties are defined according to the... ver más
Revista: Applied Sciences