Resumen
In this paper, the direct current (DC) offset cancellation and S transform-based diagnosis method is verified using three case studies. For DC offset cancellation, correlated kurtosis (CK) is used instead of the cross-correlation coefficient in order to determine the optimal iteration number. Compared to the cross-correlation coefficient, CK enhances the DC offset cancellation ability enormously because of its excellent periodic impulse signal detection ability. Here, it has been proven experimentally that it can effectively diagnose the implanted bearing fault. However, the proposed method is less effective in the case of simultaneously present bearing and gear faults, especially for extremely weak bearing faults. In this circumstance, the iteration number of DC offset cancellation is determined directly by the high-speed shaft gear mesh frequency order. For the planetary gearbox, the application of the proposed method differs from the fixed-axis gearbox, because of its complex structure. For those small fault frequency parts, such as planet gear and ring gear, the DC offset cancellation?s ability is less effective than for the fixed-axis gearbox. In these studies, the S transform is used to display the time-frequency characteristics of the DC offset cancellation processed results; the performances are evaluated, and the discussions are given. The fault information can be more easily observed in the time-frequency contour than the frequency domain.