Resumen
Mercury is one of the most toxic metals and has global importance due to the biomagnification and bioaccumulation of organomercury via the aquatic food web. The physical and chemical transformations of various mercury species in the atmosphere strongly influence their composition, phase, transport characteristics and deposition rate to the ground. Modeling efforts to evaluate the mercury cycling in the environment require an accurate understanding of atmospheric mercury chemistry. We focus this article on recent studies (since 2015) on improving our understanding of the atmospheric chemistry of mercury. We discuss recent advances in (i) determining the dominant atmospheric oxidant of elemental mercury (Hg0); (ii) understanding the oxidation reactions of Hg0 by halogen atoms and by nitrate radical (NO3); (iii) the aqueous reduction of oxidized mercury compounds (HgII); and (iv) the heterogeneous reactions of Hg on atmospherically-relevant surfaces. The need for future research to improve understanding of the fate and transformation of mercury in the atmosphere is also discussed.