Resumen
Although close relationships between the water quality of streams and the types of land use within their watersheds have been well-documented in previous studies, many aspects of these relationships remain unclear. We examined the relationships between urban land use and water quality using data collected from 527 sample points in five major rivers in Korea?the Han, Geum, Nakdong, Younsan, and Seomjin Rivers. Water quality data were derived from samples collected and analyzed under the guidelines of the Korean National Aquatic Ecological Monitoring Program, and land use was quantified using products provided by the Korean Ministry of the Environment, which were used to create a Geographic Information System. Linear models (LMs) and generalized additive models were developed to describe the relationships between urban land use and stream water quality, including biological oxygen demand (BOD), total nitrogen (TN), and total phosphorous (TP). A comparison between LMs and non-linear models (in terms of R2 and Akaike?s information criterion values) indicated that the general additive models had a better fit and suggested a non-linear relationship between urban land use and water quality. Non-linear models for BOD, TN, and TP showed that each parameter had a similar relationship with urban land use, which had two breakpoints. The non-linear models suggested that the relationships between urban land use and water quality could be categorized into three regions, based on the proportion of urban land use. In moderate urban land use conditions, negative impacts of urban land use on water quality were observed, which confirmed the findings of previous studies. However, the relationships were different in very low urbanization or very high urbanization conditions. Our results could be used to develop strategies for more efficient stream restoration and management, which would enhance water quality based on the degree of urbanization in watersheds. In particular, land use management for enhancing stream water quality might be more effective when urban land use is in the range of 1.1%?31.5% of a watershed. If urban land use exceeds 31.5% in a watershed, a more comprehensive approach would be required because water quality would not respond as rapidly as expected.