Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Forecasting  /  Vol: 1 Núm: 1 Par: Decembe (2019)  /  Artículo
ARTÍCULO
TITULO

Oil Market Efficiency under a Machine Learning Perspective

Athanasia Dimitriadou    
Periklis Gogas    
Theophilos Papadimitriou and Vasilios Plakandaras    

Resumen

No disponible

 Artículos similares

       
 
Emmanuel Senyo Fianu    
Because of the non-linearity inherent in energy commodity prices, traditional mono-scale smoothing methodologies cannot accommodate their unique properties. From this viewpoint, we propose an extended mode decomposition method useful for the time-frequen... ver más
Revista: Forecasting

 
Inzamam UI Haq, Hira Nadeem, Apichit Maneengam, Saowanee Samantreeporn, Nhan Huynh, Thasporn Kettanom and Worakamol Wisetsri    
The high volatility and energy usage of rare earths have raised sustainable and financial concerns for environmentalists and sustainable investors. Therefore, this paper aims to investigate time-varying volatility transmission among rare earths elements,... ver más

 
Salem Alshihab     Pág. 56 - 66
This study investigates the impact of certain macroeconomic determinants on stock market returns in the Gulf Cooperation Council (GCC). Those macroeconomic factors are: interest rates, oil prices, exchange rates, and money supply. Those factors were empi... ver más

 
John Weirstrass Muteba Mwamba and Sutene Mwambetania Mwambi    
This paper investigates the dynamic tail dependence risk between BRICS economies and the world energy market, in the context of the COVID-19 financial crisis of 2020, in order to determine optimal investment decisions based on risk metrics. For this purp... ver más

 
Onur Gozbasi,Buket Altinoz,Eyup Ensar Sahin     Pág. 35 - 40
Bitcoin and other digital currencies are financial assets with high volatility, which calls for an investigation of the factors that influence their prices and thus has led to a debate on whether they are reliable investment instruments or diversificatio... ver más