Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Atmósfera  /  Vol: 25 Núm: 2 Par: 0 (2012)  /  Artículo
ARTÍCULO
TITULO

An artificial neural network model application for the estimation of thermal comfort conditions in mountainous regions, Greece

K. CHRONOPOULOS    
A. KAMOUTSIS    
A. MATSOUKIS    
E. MANOLI    

Resumen

In this research, an artificial neural network model (ANN) was applied to estimate the thermal comfort conditions in the mountainous regions of Gerania (MG) and of Nafpaktia (MN) in Greece. Air temperature and relative humidity were recorded from June to August 2007 at two selected sites for each study region. Data of the aforementioned parameters were used for the calculation of the thermohygrometric index (THI), from which thermal comfort conditions were evaluated as classes. The ANN model, the multilayer perceptron (MLP) was used for the estimation of THI values at the examined high altitude level (1334 and 1338 m in MG and MN, respectively) based on the temperature and the relative humidity of the examined low altitude level (650 m in MG and 676 m in MN), taking into account the actual time of measurement (ATM). The results of the development and application of this extended MLP model indicated more accurate estimations of THI values at the two study regions during the whole day period compared to the MLP application without the use of ATM. Also, the extended model, examining the whole day, showed more accurate estimations of THI values in MG compared to MN. Similarly, this model provided better estimations separately for both daytime (09h00min-20h00min) and nighttime (21h00min-08h00min) in comparison with the respective THI estimations taking into account only the air temperature and relative humidity as input parameters. Additionally, the extended MLP model was more efficient estimating THI values during daytime hours compared to nighttime hours in both MG and MN. Also, the extended MLP model was more capable in estimating better the THI values in the ?hot? class in MG as well as in the ?comfortable? class in MN.

 Artículos similares

       
 
Tomasz Gajewski and Pawel Skiba    
The main goal of this work is to combine the usage of the numerical homogenization technique for determining the effective properties of representative volume elements with artificial neural networks. The effective properties are defined according to the... ver más
Revista: Applied Sciences

 
Dimitris Papadopoulos and Vangelis D. Karalis    
Sample size is a key factor in bioequivalence and clinical trials. An appropriately large sample is necessary to gain valuable insights into a designated population. However, large sample sizes lead to increased human exposure, costs, and a longer time f... ver más
Revista: Applied Sciences

 
Jun Yeong Kim, Chang Geun Song, Jung Lee, Jong-Hyun Kim, Jong Wan Lee and Sun-Jeong Kim    
In this paper, we propose a learning model for tracking the isolines of fluid based on the physical properties of particles in particle-based fluid simulations. Our method involves analyzing which weights, closely related to surface tracking among the va... ver más
Revista: Applied Sciences

 
Omar Abdulkhaleq Aldabash and Mehmet Fatih Akay    
An IDS (Intrusion Detection System) is essential for network security experts, as it allows one to identify and respond to abnormal traffic present in a network. An IDS can be utilized for evaluating the various types of malicious attacks. Hence, detecti... ver más
Revista: Applied Sciences

 
Daniel Einarson, Fredrik Frisk, Kamilla Klonowska and Charlotte Sennersten    
Machine learning (ML) is increasingly used in diverse fields, including animal behavior research. However, its application to ambiguous data requires careful consideration to avoid uncritical interpretations. This paper extends prior research on ringed m... ver más
Revista: Applied Sciences