Resumen
Polyvinylidene fluoride (PVDF) is a popular polymer material for making membranes for several applications, including membrane distillation (MD), via the phase inversion process. Non-solvent-induced phase separation (NIPS) and vapor-induced phase separation (VIPS) are applied to achieve a porous PVDF membrane with low mass-transfer resistance and high contact angle (hydrophobicity). In this work, firstly, the impacts of several preparation parameters on membrane properties using VIPS and NIPS were studied. Then, the performance of the selected membrane was assessed in a lab-scale direct-contact MD (DCMD) unit. The parametric study shows that decreasing PVDF concentration while increasing both relative humidity (RH) and exposure time increased the contact angle and bubble-point pore size (BP). Those trends were investigated further by varying the casting thickness. At higher casting thicknesses and longer exposure time (up to 7.5 min), contact angle (CA) increased but BP significantly decreased. The latter showed a dominant trend leading to liquid entry pressure (LEP) increase with thickness.