Redirigiendo al acceso original de articulo en 18 segundos...
ARTÍCULO
TITULO

ForEx++: A New Framework for Knowledge Discovery from Decision Forests

Md Nasim Adnan    
Md Zahidul Islam    

Resumen

Decision trees are popularly used in a wide range of real world problems for both prediction and classification (logic) rules discovery. A decision forest is an ensemble of decision trees and it is often built for achieving better predictive performance compared to a single decision tree. Besides improving predictive performance, a decision forest can be seen as a pool of logic rules (rules) with great potential for knowledge discovery. However, a standard-sized decision forest usually generates a large number of rules that a user may not able to manage for effective knowledge analysis. In this paper, we propose a new, data set independent framework for extracting those rules that are comparatively more accurate, generalized and concise than others. We apply the proposed framework on rules generated by two different decision forest algorithms from some publicly available medical related data sets on dementia and heart disease. We then compare the quality of rules extracted by the proposed framework with rules generated from a single J48 decision tree and rules extracted by another recent method. The results reported in this paper demonstrate the effectiveness of the proposed framework.

 Artículos similares

       
 
Agostinho Agra and Jose Maria Samuco    
Given a social network modelled by a graph, the goal of the influence maximization problem is to find k vertices that maximize the number of active vertices through a process of diffusion. For this diffusion, the linear threshold model is considered. A n... ver más
Revista: Information

 
Chuanxiang Song, Seong-Yoon Shin and Kwang-Seong Shin    
This study introduces a novel approach named the Dynamic Feedback-Driven Learning Optimization Framework (DFDLOF), aimed at personalizing educational pathways through machine learning technology. Our findings reveal that this framework significantly enha... ver más
Revista: Applied Sciences

 
Lucas Schmidt Goecks, Anderson Felipe Habekost, Antonio Maria Coruzzolo and Miguel Afonso Sellitto    
Digital transformations in manufacturing systems confer advantages for enhancing competitiveness and ensuring the survival of companies by reducing operating costs, improving quality, and fostering innovation, falling within the overarching umbrella of I... ver más

 
Kevin Mallinger and Ricardo Baeza-Yates    
The continuous fusion of artificial intelligence (AI) and autonomous farming machinery (e.g., drones and field robots) provides a significant shift in the daily work experience of farmers. Faced with new technological developments, many risks and opportu... ver más
Revista: Applied Sciences

 
Mihai Crengani?, Radu-Eugen Breaz, Sever-Gabriel Racz, Claudia-Emilia Gîrjob, Cristina-Maria Biri?, Adrian Maro?an and Alexandru Bârsan    
This scientific paper presents the development and validation process of a dynamic model in Simulink used for decision-making regarding the locomotion and driving type of autonomous omnidirectional mobile platforms. Unlike traditional approaches relying ... ver más
Revista: Applied Sciences