Redirigiendo al acceso original de articulo en 23 segundos...
ARTÍCULO
TITULO

Classification of Liver Diseases Based on Ultrasound Image Texture Features

Sendren Sheng-Dong Xu    
Chun-Chao Chang    
Chien-Tien Su and Pham Quoc Phu    

Resumen

This paper discusses using computer-aided diagnosis (CAD) to distinguish between hepatocellular carcinoma (HCC), i.e., the most common type of primary liver malignancy and a leading cause of death in people with cirrhosis worldwide, and liver abscess based on ultrasound image texture features and a support vector machine (SVM) classifier. Among 79 cases of liver diseases including 44 cases of liver cancer and 35 cases of liver abscess, this research extracts 96 features including 52 features of the gray-level co-occurrence matrix (GLCM) and 44 features of the gray-level run-length matrix (GLRLM) from the regions of interest (ROIs) in ultrasound images. Three feature selection models—(i) sequential forward selection (SFS), (ii) sequential backward selection (SBS), and (iii) F-score—are adopted to distinguish the two liver diseases. Finally, the developed system can classify liver cancer and liver abscess by SVM with an accuracy of 88.875%. The proposed methods for CAD can provide diagnostic assistance while distinguishing these two types of liver lesions.

 Artículos similares

       
 
Run Fang, Libo Zeng and Fan Yi    
Multi-spectral imaging technique plays an important role in real-world applications such as medicine and medical detections. This paper proposes a cervical cancer cell screening method to simultaneously adopt TBS classification and DNA quantitative analy... ver más
Revista: Applied Sciences

 
Rania M. Ghoniem    
Current research on computer-aided diagnosis (CAD) of liver cancer is based on traditional feature engineering methods, which have several drawbacks including redundant features and high computational cost. Recent deep learning models overcome these prob... ver más
Revista: Information

 
Ahmadi Irmansyah Lubis,Umri Erdiansyah,Rosma Siregar     Pág. 81 - 89
Pada penelitian ini bertujuan untuk melakukan komparasi terhadap metode Naïve Bayes dan Random Forest dalam klasifikasi data pasien penyakit liver. Adapun data pengujian yang digunakan yaitu Indian Liver Patient Dataset (ILPD) yang diperoleh dari UCI Mac... ver más

 
Kemal Polat, Seral ¿ahan, Halife Kodaz and Salih     Pág. 172 - 183