Resumen
Traffic flow oscillations, including traffic waves, are a common yet incompletely understood feature of congested traffic. Possible mechanisms include traffic flow instabilities, indifference regions or finite human perception thresholds (action points), and external acceleration noise. However, the relative importance of these factors in a given situation remains unclear. We bring light into this question by adding external noise and action points to the Intelligent Driver Model and other car-following models thereby obtaining a minimal model containing all three oscillation mechanisms. We show analytically that even in the subcritical regime of linearly stable flow (order parameter ? < 0), external white noise leads to spatiotemporal speed correlations "anticipating" the waves of the linearly unstable regime. Sufficiently far away from the threshold, the amplitude scales with (-?)-0.5. By means of simulations and comparisons with experimental car platoons and bicycle traffic, we show that external noise and indifference regions with action points have essentially equivalent effects. Furthermore, flow instabilities dominate the oscillations on freeways while external noise or action points prevail at low desired speeds such as vehicular city or bicycle traffic. For bicycle traffic, noise can lead to fully developed waves even for single-file traffic in the subcritical regime.