Redirigiendo al acceso original de articulo en 16 segundos...
ARTÍCULO
TITULO

Remote Sensing of CDOM, CDOM Spectral Slope, and Dissolved Organic Carbon in the Global Ocean

Dirk Aurin    
Antonio Mannino and David J. Lary    

Resumen

A Global Ocean Carbon Algorithm Database (GOCAD) has been developed from over 500 oceanographic field campaigns conducted worldwide over the past 30 years including in situ reflectances and coincident satellite imagery, multi- and hyperspectral Chromophoric Dissolved Organic Matter (CDOM) absorption coefficients from 245–715 nm, CDOM spectral slopes in eight visible and ultraviolet wavebands, dissolved and particulate organic carbon (DOC and POC, respectively), and inherent optical, physical, and biogeochemical properties. From field optical and radiometric data and satellite measurements, several semi-analytical, empirical, and machine learning algorithms for retrieving global DOC, CDOM, and CDOM slope were developed, optimized for global retrieval, and validated. Global climatologies of satellite-retrieved CDOM absorption coefficient and spectral slope based on the most robust of these algorithms lag seasonal patterns of phytoplankton biomass belying Case 1 assumptions, and track terrestrial runoff on ocean basin scales. Variability in satellite retrievals of CDOM absorption and spectral slope anomalies are tightly coupled to changes in atmospheric and oceanographic conditions associated with El Niño Southern Oscillation (ENSO), strongly covary with the multivariate ENSO index in a large region of the tropical Pacific, and provide insights into the potential evolution and feedbacks related to sea surface dissolved carbon in a warming climate. Further validation of the DOC algorithm developed here is warranted to better characterize its limitations, particularly in mid-ocean gyres and the southern oceans.

 Artículos similares

       
 
Junyi Chen, Yanyun Shen, Yinyu Liang, Zhipan Wang and Qingling Zhang    
Aircraft detection in SAR images of airports remains crucial for continuous ground observation and aviation transportation scheduling in all weather conditions, but low resolution and complex scenes pose unique challenges. Existing methods struggle with ... ver más
Revista: Applied Sciences

 
Rossana Caroni, Monica Pinardi, Gary Free, Daniela Stroppiana, Lorenzo Parigi, Giulio Tellina, Mariano Bresciani, Clément Albergel and Claudia Giardino    
A study was carried out to investigate the effects of wildfires on lake water quality using a source dataset of 2024 lakes worldwide, covering different lake types and ecological settings. Satellite-derived datasets (Lakes_cci and Fire_cci) were used and... ver más
Revista: Applied Sciences

 
Shihao Ma, Jiao Wu, Zhijun Zhang and Yala Tong    
Addressing the limitations, including low automation, slow recognition speed, and limited universality, of current mudslide disaster detection techniques in remote sensing imagery, this study employs deep learning methods for enhanced mudslide disaster d... ver más
Revista: Applied Sciences

 
Qiyan Li, Zhi Weng, Zhiqiang Zheng and Lixin Wang    
The decrease in lake area has garnered significant attention within the global ecological community, prompting extensive research in remote sensing and computer vision to accurately segment lake areas from satellite images. However, existing image segmen... ver más
Revista: Applied Sciences

 
Jingxiong Lei, Xuzhi Liu, Haolang Yang, Zeyu Zeng and Jun Feng    
High-resolution remote sensing images (HRRSI) have important theoretical and practical value in urban planning. However, current segmentation methods often struggle with issues like blurred edges and loss of detailed information due to the intricate back... ver más
Revista: Applied Sciences