Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Energies  /  Vol: 9 Núm: 3 Par: March (2016)  /  Artículo
ARTÍCULO
TITULO

Pulse-Based Fast Battery IoT Charger Using Dynamic Frequency and Duty Control Techniques Based on Multi-Sensing of Polarization Curve

Meng Di Yin    
Jeonghun Cho and Daejin Park    

Resumen

The pulse-based charging method for battery cells has been recognized as a fast and efficient way to overcome the shortcoming of a slow charging time in distributed battery cells, which is regarded as a connection of cells such as the Internet of Things (IoT). The pulse frequency for controlling the battery charge duration is dynamically controlled within a certain range in order to inject the maximum charge current into the battery cells. The optimal frequency is determined in order to minimize battery impedance. The adaptation of the proposed pulse duty and frequency decreases the concentration of the polarization by sensing the runtime characteristics of battery cells so that it guarantees a certain level of safety in charging the distributed battery cells within the operating temperature range of 5?45 °C. The sensed terminal voltage and temperature of battery cells are dynamically monitored while the battery is charging so as to adjust the frequency and duty of the proposed charging pulse method, thereby preventing battery degradation. The evaluation results show that a newly designed charging algorithm for the implemented charger system is about 18.6% faster than the conventional constant-current (CC) charging method with the temperature rise within a reasonable range. The implemented charger system, which is based on the proposed dynamic frequency and duty control by considering the cell polarization, charges to about 80% of its maximum capacity in less than 56 min and involves a 13 °C maximum temperature rise without damaging the battery.

 Artículos similares

       
 
Mohamed Torky, Mohamed El-Dosuky, Essam Goda, Václav Sná?el and Aboul Ella Hassanien    
Unmanned aerial vehicles (UAVs) have emerged as a powerful technology for introducing untraditional solutions to many challenges in non-military fields and industrial applications in the next few years. However, the limitations of a drone?s battery and t... ver más
Revista: Drones

 
Shriram S. Rangarajan, Suvetha Poyyamani Sunddararaj, AVV Sudhakar, Chandan Kumar Shiva, Umashankar Subramaniam, E. Randolph Collins and Tomonobu Senjyu    
With the widespread use of lithium-ion batteries in a wide range of consumer electronics products, the CE industry has undergone a dramatic shift. The Li-ion battery has emerged as the heart of electric cars, and the focus has now shifted to the automoti... ver más

 
Andelka ?tilic, Adis Pu?ka, Aleksandar Ðuric and Darko Bo?anic    
Traditional fuel-powered vehicle emissions have long been recognized as a major barrier to a sustainable environment, and their minimization could ensure both economic support for the sustainable societal fundament and pollution prevention. Electrifying ... ver más
Revista: Urban Science

 
Wenich Vattanapuripakorn, Sathapon Sonsupap, Khomson Khannam, Natthakrit Bamrungwong, Prachakon Kaewkhiaw, Jiradanai Sarasamkan and Bopit Bubphachot    
Electricity has become one of the most important factors contributing to both the livelihoods of individuals and global economic development. Most electricity generation is still derived from burning fossil fuels that contribute to environmental degradat... ver más

 
Revista: Energies