Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Batteries  /  Vol: 4 Núm: 4 Par: Decembe (2018)  /  Artículo
ARTÍCULO
TITULO

State of Charge Estimation of Power Battery Using Improved Back Propagation Neural Network

Chuan-Wei Zhang    
Shang-Rui Chen    
Huai-Bin Gao    
Ke-Jun Xu and Meng-Yue Yang    

Resumen

No disponible

 Artículos similares

       
 
Andreas Rauh, Marit Lahme and Oussama Benzinane    
Battery systems are one of the most important components for the development of flexible energy storage for future applications. These comprise energy storage in both the mobility sector and stationary applications. To ensure the safe operation of multip... ver más

 
Houfei Lin, Jianxin Jin, Qidai Lin, Bo Li, Chengzhi Wei, Wenfa Kang and Minyou Chen    
Battery energy storage systems (BESS) have wide applicability for frequency regulation services in power systems, owing to their fast response and flexibility. In this paper, a distributed method for frequency regulation based on the BESS is proposed, wh... ver más
Revista: Energies

 
Xian Wang, Zhengxiang Song, Kun Yang, Xuyang Yin, Yingsan Geng and Jianhua Wang    
Lithium-bismuth liquid metal batteries have much potential for stationary energy storage applications, with characteristics such as a large capacity, high energy density, low cost, long life-span and an ability for high current charge and discharge. Howe... ver más
Revista: Energies

 
This paper presents a tradeoff analysis in terms of accuracy and computational cost between different architectures of artificial neural networks for the State of Charge (SOC) estimation of lithium batteries in hybrid and electric vehicles. The considere... ver más
Revista: Batteries

 
Revista: Energies