Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Water  /  Vol: 9 Núm: 3 Par: 0 (2017)  /  Artículo
ARTÍCULO
TITULO

Modeling the Influence of River Cross-Section Data on a River Stage Using a Two-Dimensional/Three-Dimensional Hydrodynamic Model

Wei-Bo Chen    
Wen-Cheng Liu    

Resumen

A large amount of accurate river cross-section data is indispensable for predicting river stages. However, the measured river cross-section data are usually sparse in the transverse direction at each cross-section as well as in the longitudinal direction along the river channel. This study presents three algorithms to resample the river cross-section data points in both the transverse and longitudinal directions from the original data. A two-dimensional (2D) high-resolution unstructured-grid hydrodynamic model was used to assess the performance of the original and resampled cross-section data on a simulated river stage under low flow and high flow conditions. The simulated river stages are significantly improved using the resampled cross-section data based on the linear interpolation in the tidal river and non-tidal river segments. The resampled cross-section data based on the linear interpolation satisfactorily maintains the topographic and morphological features of the river channel, especially in the meandering river segment. Furthermore, the performance of the 2D and three-dimensional (3D) models on the simulated river stage was also evaluated using the resampled cross-section data. The results indicate that the 2D and 3D models reproduce similar river stages in both tidal and non-tidal river segments under the low flow condition. However, the 2D model overestimates the river stages in both the tidal and non-tidal river segments compared to the 3D model under the high flow condition. The model sensitivity was implemented to investigate the influence of bottom drag coefficient and vertical eddy viscosity on river stage using 2D and 3D models based on the linear interpolation method to resample river bed cross-section. The results reveal that the change of bottom drag coefficient has a minor impact on river stage, but the change of vertical eddy viscosity is insensitive to river stage.

 Artículos similares

       
 
Shuqi Zhang, Tong Zhi, Hongbo Zhang, Chiheng Dang, Congcong Yao, Dengrui Mu, Fengguang Lyu, Yu Zhang and Shangdong Liu    
The hydrological series in the Loess Plateau region has exhibited shifts in trend, mean, and/or variance as the environmental conditions have changed, indicating a departure from the assumption of stationarity. As the variations accumulate, the compound ... ver más
Revista: Water

 
Charalampos Skoulikaris    
Large-scale hydrological modeling is an emerging approach in river hydrology, especially in regions with limited available data. This research focuses on evaluating the performance of two well-known large-scale hydrological models, namely E-HYPE and LISF... ver más
Revista: Water

 
Felix Oteng Mensah, Clement Aga Alo and Duke Ophori    
The exigency of the current climate crisis demands a more comprehensive approach to addressing location-specific climate impacts. In the Passaic River Basin (PRB), two bodies of research?hydroclimatic trend detection and hydrological modeling?have been c... ver más
Revista: Hydrology

 
Idi Souley Tangam, Roland Yonaba, Dial Niang, Mahaman Moustapha Adamou, Amadou Keïta and Harouna Karambiri    
This study focuses on the Sirba River Basin (SRB), a transboundary West African catchment of 38,950 km2 shared by Burkina Faso and Niger, which contributes to flooding downstream in Niamey (Niger). The study uses the HEC-HMS hydrological model to explore... ver más
Revista: Hydrology

 
Cristina Torrecillas, Andres Payo, Manuel Cobos, Helen Burke, Dave Morgan, Helen Smith and Gareth Owen Jenkins    
This study represents the first attempt to map the sediment thickness spatial distribution along the Andalusian coastal zone by integrating various publicly available datasets. While prior studies have presented bedform- and sediment-type syntheses, none... ver más