Resumen
It is known, when using narrow-band signals in high orbital satellite communication systems for organizing exchange of information, the efficiency of allocated frequency and time communication channel resource usage is reduced due to the large uncertainty in the frequency caused at the Doppler Effect and changes time of received signals arrival.In this regard, currently one of the promising directions in the development of methods for constructing channel signals for use as information carriers in modern high-orbit satellite communication systems with code division of addresses, providing communication between remote subscribers in the Northern latitudes, is the use of broadband noise-like signals, which are the result of the use of special codes and new methods of spectrum expansion.However, the priority of usage of one or another signal class in these systems is largely determined by their resistance to Doppler frequency shift. In with this regard article assesses the noise immunity of high-orbit satellite telecommunication systems with code division of addresses when using a number of broadband noise-like signals with linear frequency modulation as information carriers.