Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Water  /  Vol: 9 Núm: 3 Par: 0 (2017)  /  Artículo
ARTÍCULO
TITULO

Effect of Climate Change on Hydrology, Sediment and Nutrient Losses in Two Lowland Catchments in Poland

Pawel Marcinkowski    
Mikolaj Piniewski    
Ignacy Kardel    
Mateusz Szczesniak    
Rasmus Benestad    
Raghavan Srinivasan    
Stefan Ignar    
Tomasz Okruszko    

Resumen

Future climate change is projected to have significant impact on water resources availability and quality in many parts of the world. The objective of this paper is to assess the effect of projected climate change on water quantity and quality in two lowland catchments (the Upper Narew and the Barycz) in Poland in two future periods (near future: 2021?2050, and far future: 2071? 2100). The hydrological model SWAT was driven by climate forcing data from an ensemble of nine bias-corrected General Circulation Models?Regional Climate Models (GCM-RCM) runs based on the Coordinated Downscaling Experiment?European Domain (EURO-CORDEX). Hydrological response to climate warming and wetter conditions (particularly in winter and spring) in both catchments includes: lower snowmelt, increased percolation and baseflow and higher runoff. Seasonal differences in the response between catchments can be explained by their properties (e.g., different thermal conditions and soil permeability). Projections suggest only moderate increases in sediment loss, occurring mainly in summer and winter. A sharper increase is projected in both catchments for TN losses, especially in the Barycz catchment characterized by a more intensive agriculture. The signal of change in annual TP losses is blurred by climate model uncertainty in the Barycz catchment, whereas a weak and uncertain increase is projected in the Upper Narew catchment.

 Artículos similares

       
 
Ahmed Abouelsaad, Greg White and Ali Jamshidi    
Asphalt mixtures age during service in the field, primarily as the result of chemical changes in the bituminous binder phase. The ageing phenomenon changes the properties of the asphalt mixture, including the stiffness modulus, the resistance to deformat... ver más
Revista: Infrastructures

 
Riguga Su, Chaobin Yang, Zhibo Xu, Tingwen Luo, Lilong Yang, Lifeng Liu and Chao Wang    
Urban landscape has important effects on urban climate, and the local climate zone (LCZ) framework has been widely applied in related studies. However, few studies have compared the relative contributions of LCZ on the urban thermal environment across di... ver más

 
Hung Vuong Pham, Maria Katherina Dal Barco, Mohsen Pourmohammad Shahvar, Elisa Furlan, Andrea Critto and Silvia Torresan    
The coastal environment is vulnerable to natural hazards and human-induced stressors. The assessment and management of coastal risks have become a challenging task, due to many environmental and socio-economic risk factors together with the complex inter... ver más

 
Bahruddin Ibrahim, Arya Wiranata, Ida Zahrina, Leo Sentosa, Nasruddin Nasruddin and Yuswan Muharam    
Overloading and climate change are often problems in pavement structures. For this reason, hard asphalt binders have high softening points, are elastic, and have good adhesion, which is needed to improve pavement performance. Asphalt binder performance c... ver más
Revista: Applied Sciences

 
Jiarun Tang and Dongxia Chen    
Granite residual soil (GRS) exhibits favorable engineering properties in its natural state. However, a hot and rainy climate, combined with vibrations generated during mechanical construction, can cause a notable decrease in its strength. In this study, ... ver más
Revista: Applied Sciences