Redirigiendo al acceso original de articulo en 22 segundos...
Inicio  /  Energies  /  Vol: 9 Núm: 5 Par: May (2016)  /  Artículo
ARTÍCULO
TITULO

A Novel Single Winding Structure and Closed Loop Control of the Suspension Force Vector of Bearingless Permanent Magnet Synchronous Motors

Huangqiu Zhu    
Jianfei Yuan and Jintao Jv    

Resumen

At present, because of their advantages of simple structure, low cost, low power consumption and high efficiency, single winding bearingless permanent magnet synchronous motors (SBPMSMs) have become one of the research hotspots in the bearingless technology field. However, a high motional-electromotive force (EMF) is generated by rotor rotation in the single winding, which already has side-effects on the normal suspension force current, and the suspension force response can be delayed. Because the method of double torque current inverse injection in the symmetrical winding allows the motional-EMFs of the corresponding phase windings to offset each other in the opposite direction, with no adverse effects on original performance, a T-shaped single winding configuration is proposed to realize precisely that effect. In this paper, the analytical expressions of the radial suspension force and torque are deduced and the motional-EMF and performance are analyzed by finite element method using the Ansys-Maxwell software. In addition, a suspension force vector closed loop control strategy is proposed to improve the suspension performance. The complete control strategy of torque and suspension force is designed based on the above motor winding configuration. Finite element analysis (FEA) is used to verify the T-shaped winding structure. The control strategy is demonstrated by software (MATLAB) simulation and an experimental prototype. These results show that the winding structure and the control strategy can achieve the desired effect, improving the radial suspension force.

 Artículos similares

       
 
Jafar Jafari-Asl, Seyed Arman Hashemi Monfared and Soroush Abolfathi    
This study investigates the optimal and safe operation of pumping stations in water distribution systems (WDSs) with the aim of reducing the environmental footprint of water conveyance processes. We introduced the nonlinear chaotic honey badger algorithm... ver más
Revista: Water

 
Ryan Good, David Nguyen, Hossein Bonakdari, Andrew Binns and Bahram Gharabaghi    
Predicting morphological adjustments in alluvial meandering streams remains a challenging task due to the complex nature of the governing inter-related dynamic flow and sediment transport processes. This difficulty is increased in streams with irregular ... ver más
Revista: Water

 
Kate Carlson, Barbara P. Buttenfield and Yi Qiang    
Quantification of all types of uncertainty helps to establish reliability in any analysis. This research focuses on uncertainty in two attribute levels of wetland classification and creates visualization tools to guide analysis of spatial uncertainty pat... ver más

 
Balázs Eller, Majid Movahedi Rad, Imre Fekete, Szabolcs Szalai, Dániel Harrach, Gusztáv Baranyai, Dmytro Kurhan, Mykola Sysyn and Szabolcs Fischer    
The current paper concerns the investigation of CC (Concrete Canvas), a unique building material from the GCCM (geosynthetic cementitious composite mat) product group. The material is suitable for trench lining, trench paving, or even military constructi... ver más
Revista: Infrastructures

 
Masoud Latifinavid and Aydin Azizi    
The application of robotic systems is widespread in all fields of life and sport. Tennis ball collection robots have recently become popular because of their potential for saving time and energy and increasing the efficiency of training sessions. In this... ver más
Revista: Future Internet