Redirigiendo al acceso original de articulo en 24 segundos...
Inicio  /  Andean Geology  /  Vol: 30 Núm: 2 Par: 0 (2003)  /  Artículo
ARTÍCULO
TITULO

Segmentation, kinematics and relative chronology of the late deformation of Salar del Carmen Fault, Atacama Fault System (23°40'S), northern Chile.

Gabriel Gonzalez    
Daniel Carrizo    

Resumen

The Salar del Carmen Fault is the most important strand of the Atacama Fault System exposed along the eastern border of the Sierra del Ancla. The younger slip event along this fault forms seven consecutive 8 km long north-south striking fault segments that cut Pliocene alluvial fans. The segments show a left stepping geometry, whose terminal parts are linked by transfer faults. The scarps were formed by east-down-dip-parallel slip along subvertical fault planes. The strain state is characterized by a N90E trending and 33° plunging extensional axis a N87W trending and 56° plunging shortening axis. Ruptures along the fault form 0.2-9 m high fault scarps. Older scarps are dominated by debris slope whereas younger scarps are free face dominated. Scarp ages, estimated by morphologic dating, indicate that the scarps are not older than the Late Pleistocene (< 400 Ka). Cracks with centimetric down-the-dip displacement were formed during the last subduction earthquake (Antofagasta, 30th de July 1995, Mw=8.1. This demonstrates that the Atacama Fault System experiences coseismic reactivation during large subduction earthquakes. Greater vertical slip documented along the Salar del Carmen Fault are interpreted to be triggered by subduction earthquakes with Mw >8.0.

 Artículos similares

       
 
Abdelrahman Khalifa, Bashar Bashir, Ziyadin Çakir, Sinasi Kaya, Abdullah Alsalman and Ahmed Henaish    
A principal and independent component analysis (PCA and ICA) and a minimum noise fraction analysis (MNFA) were applied in this study to Landsat 8 Operational Land Imager (OLI) images along the Adiyaman fault zone in Eastern Turkey. These analyses indicat... ver más

 
Jose Araya,Gregory P. De Pascale,Rodrigo Mardel,Sergio A. Sepúlveda     Pág. 529 - 545
Understanding the location and nature of Quaternary active crustal faults is critical to the reduction of both fault rupture and strong ground motions hazards in built environments. Recent work along the San Ramón Fault (SRF) demonstrates that crustal se... ver más
Revista: Andean Geology

 
Diego Osorio Afanador,Francisco Velandia     Pág. 237 - 266
The Yariguíes Anticlinorium, a regional structure located at the western flank of the Eastern Cordillera of Colombia, includes the thickest record of continental sedimentary rocks accumulated near to the Jurassic-Cretaceous boundary. The sedimentary rock... ver más
Revista: Andean Geology

 
Gregory P. De Pascale     Pág. 175 - 183
Understanding the location and nature of Quaternary active crustal faults is critical to reduce both the impact of fault rupture and strong ground motions hazards (when these faults rupture causing earthquakes). It is also important for understanding how... ver más
Revista: Andean Geology

 
Christian Creixell,Javier Fuentes,Hessel Bierma,Esteban Salazar     Pág. 469 - 507
Cretaceous porphyry copper deposits of northern Chile (28º-29º30? S) are genetically related with dacitic to dioritic porphyries and they represent a still poorly-explored target for Cu resources. The porphyries correspond to stocks distributed into two ... ver más
Revista: Andean Geology