Resumen
This article presents a bottom-up approach for calculation of the useful heat demand for space heating and hot water preparation using geo-referenced datasets for buildings at the city level. This geographic information system (GIS) based approach was applied in the case study for the city of Krakow, where on the one hand the district heat network is well developed, while on the other hand there are still substantial number of buildings burning solid fuels in individual boilers and stoves, causing air pollution. The calculated heat demand was aggregated in the grid with 100 m × 100 m spatial resolution to deliver the heat map depicting the current situation for 21 buildings types. The results show that the residential buildings, in particular one- and multi-family buildings, have the highest share in overall demand for heat. By combining the results with location of the district heat (DH) network, the potential areas in its close vicinity that have sufficient heat demand density for developing the net were pointed out. Future evolution in heat demand for space heating in one-family houses was evaluated with the use of deterministic method employing building stock model. The study lays a foundation for planning the development of the heating system at the city level.