Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Water  /  Vol: 9 Núm: 10 Par: 0 (2017)  /  Artículo
ARTÍCULO
TITULO

An Analytical Model of Fickian and Non-Fickian Dispersion in Evolving-Scale Log-Conductivity Distributions

Marilena Pannone    

Resumen

The characteristics of solute transport within log-conductivity fields represented by power-law semi-variograms are investigated by an analytical Lagrangian approach that accounts for the automatic frequency cut-off induced by the initial contaminant plume size. The transport process anomaly is critically controlled by the magnitude of the Péclet number. Interestingly enough, unlike the case of fast-decaying correlation functions (i.e., exponential or Gaussian), the presence of intensive transverse diffusion acts as an antagonist mechanism in the process of Fickian regime achievement. On the other hand, for markedly advective conditions and finite initial plume size, even the ergodic longitudinal dispersion coefficient turns out to be asymptotically constant, and the corresponding expected concentration distribution can therefore be obtained by conventional mathematical methods.