Resumen
Combined Cooling, Heating and Power (CCHP) systems have been widely used in different kinds of buildings to make better use of fuels because of their high overall efficiency. This paper presents a mathematical analysis of a CCHP system in comparison to a Heating, Ventilation and Air Conditioning (HVAC) system. The operation strategies following electric load (FEL), thermal load (FTL) and a hybrid electric-thermal load (FHL) are proposed and investigated in this study. Criteria, namely primary energy saving (PES), exergy efficiency (?exergy), and CO2 emission reduction (CER) are defined to evaluate the performances of CCHP systems for a hypothetical building located in Dalian (China). The results indicate that: (1) a new mathematical foundation is established to find whether the recovered thermal energy and the amount of electricity generated by the power generation unit (PGU) are enough to provide the energy required; (2) the CCHP system does not always perform better than a HVAC system from an instantaneous perspective, especially in FTL mode; (3) the CCHP system in FEL operation mode can be seen as a suitable energy system in Dalian from the annual performance perspective. Furthermore, a sensitivity analysis is presented in order to show how the performances vary due to the changes of various technical variables.